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Abstract

Main techniques of probability density estimation on Riemannian
manifolds are reviewed in the case of the Siegel space. For computa-
tional reasons we chose to focus on the kernel density estimation. The
main result of the paper is the expression of Pelletier's kernel density
estimator. The method is applied to density estimation of re ection
coe cients from radar observations.

Keywords : Kernel density estimation; Siegel space; Symmetric space;
Radar signals

1 Introduction

Probability density estimation is a vast topic. There exists various standard
techniques in the Euclidean context, such as histograms, kernel methods,
or the characteristic function approach. These methods can sometimes be
transposed to the case of Riemannian manifolds. However, the transposition
often introduces additional computational e orts. This additional e ort de-
pends on the method used and the nature of the manifold. The Siegel space
is a generalization of the hyperbolic space. It has a structure of symmetric
Riemannian manifold, which enables to adapt di erent density estimation
methods at a reasonable cost. Convergence rates of the density estimation
using kernels and orthogonal series were progressively generalized to Rie-
mannian manifolds, see [2][1]. The Siegel space appears in radar processing



in the study of Toeplitz block Toeplitz matrices, whose blocks represent co-
variance matrices of the signal, see [5, 6, 7]. Information geometry is now
a standard framework in radar processing, see [4, 5, 6, 7, 8, 9, 10]. The
information geometry on positive de nite Teoplitz block Teoplitz matrices

is directly related to the metric on the Siegel space, see [11]. Indeed these
Toeplitz block Toeplitz matrices can be represented by a symmetric positive
de nite matrix and a set of coe cients laying in the Siegel disk. The metric
considered on Toeplitz block Toeplitz matrices is a product metric between
a metric on symmetric positive de nite matrices and the Siegel disk metric,
see [11]. One already encounters the problem of density estimation in the
hyperbolic space for electrical impedance [3], networks [16] and radar sig-
nals [17]. In [12] was proposed a generalization of the Gaussian law on the
hyperbolic space. Apart from [13], where authors propose a generalization
of the Gaussian law, probability density estimation on the Siegel space has
not yet been addressed. The contributions of the paper are the following.
We review the main non parametric density estimation techniques on the
Siegel disk. We provide some rather simple explicit expressions of the ker-
nels proposed by Pelletier in [1]. These expressions makes the kernel density
estimation the most adapted method. We present visual results of estimated
densities in the simple case where the Siegel disk correspond to the Poincae
disk. The paper begins with an introduction to the Siegel space in Section 2.
Section 3 reviews the main non-parametric density estimation techniques on
the Siegel space. Section 4 presents an application to radar data estimation.

2 The Siegel space

This section presents facts about the Siegel space. The interested reader
can nd more details in [20, 18]

2.1 The Siegel upper half space

The Siegel upper half space is a generalization of the Poincae upper half
space. LetSym(n) be the space of real symmetric matrices of siza n and
Sym. (n) the set of real symmetric positive de nite matrices of sizen n.
The Siegel upper half space is de ned by

Hho=fZ =X +iYjX 2 Sym(n);Y 2 Sym, (n)g
Hpn is equipped with the following metric

ds=2:tr(Y dzy 1dzZ)



The set of real symplectic matricesSp(n; R) is de ned by

g2 Sp(n;R), ¢gJdg=1J

where
_ 0 Iy
)= In O
and |, isthe n n identity matrix. Sp(n; R) is a subgroup ofSLo,(R), the
set of 2n  2n invertible matrices of determinant 1. Let g = é E’) 2

Sp(n; R). The metric ds is invariant under the following action of Sp(n; R),
9:Z=(AZ + B)(CZz+ D) *:
This action is transitive, i.e.
8Z 2Hn;992 Sp(n; R); g:il = Z:

The stabilizer K of il is the set of elementsg of Sp(n; R) whose action
leavesil xed. K is a subgroup ofSp(n; R) called the isotropy group. We
can verify that

K= AB i A+ B 2 SU(N)

A symmetric space is a Riemannian manifold where the reversal of the
geodesics is well de ned and is an isometry. Formallyexp,(u) 7! expp( Uu)
is an isometry for eachp on the manifold, whereu is a vector in the tangent
space atp, and exp, the Riemannian exponential application at p. In other
words, the symmetry around each point is an isometry.H, is a symmetric
space, see [18]. The structure of a symmetric space can be studied through
its isometry group and the Lie algebra of its isometry group. The present
work will make use of the Cartan and lwasawa decompositions of the Lie
algebra of Sp(n; R). Let sp(n; R) be the Lie algebra ofSp(n; R). Given A,

B =(A;B;C).

B and C three real n by n matrices, let us write C Al

We have that

sp(n; R) = f(A;B;C)jB and C symmetricg

The Cartan decomposition ofsp(n; R) is given by

sp(n;R)=t p

where
t=1(A;B; B)jB symmetric and A skew-symmetriqy

3



p= f(A;B;B)jA;B; symmetricg D
The lwasawa decompaosition is given by
sp(n;R)=t a n
where
a= f(H; 0;0)jH diagonalg
n= f(A;B; 0)jA upper triangular with 0 on the diagonal ; B symmetricg

It can be shown that
p= [ kak Adk(a) (2)
where Ad is the adjoint representation of Sp(n; R).

2.2 The Siegel disk

The Siegel diskD,, is the set of complex matricesfZjl Z Z 0g where

stands for the Loewner order. Recall that for A and B to Hermitian
matrices, A B according to the Loewner order means thatA B is
positive de nite. The transformation

Z2H 71 (Z i)z +il) 2D,

is an isometry between the Siegel upper half space and the Siegel disk. Let
I il

C= TR The application g 2 Sp(n;R) 7! CgC ! identies the
set of isometries ofH, and of D,. Thus, it can be shown that a matrix
g= % % 2 Sp(n; C) acts isometrically on D, by

9:Z=(AZ + B)(AZ + B) !

where A stands for the conjugate ofA. The point il in H, is identi ed
with the null matrix noted 0 in Dy,. Let Z 2 D,. There existsP a diagonal
matrix with decreasing positive real entries and U a unitary matrix such

that Z = UPU!. Let ; :: , be such that
0
th( 1)
P =
th( n)
Let
0 1 0
ch( 1) sh( 1)
Ag = : , Bo= .
ch( n) sh( n)



and

9 = U ° A, Bo
It can be shown that
gz 2 Sp(n;C)and gz:0=Z 3)

We provide now a correspondence between the elements Bf, and the
elements ofp de ned in Eq. 1. Let
1

0
1
Hz—a " 2a )

1

d 0
e
az-é e’ e 1 2 A = exp(a):

e n

an

It can be shown that there existsk 2 K such that
Cexp(Adg(Hz))C *:0=2
or equivalently
CkazkC 0= z:

Recall that Eq. 2 givesAdk(H) 2 pand kak 2 exp(p). The distance between
Z and 0 in D, is given by
X , 122
do;z)= 2 ; ®)

see [18] page 292.
IINegative curvature of the Siegle space!!



3 Non parametric density estimation on the Siegel
space

Let be a space, endowed with a -algebra and a probability measurep.

Let X be a random variable ! D ,. The Riemannian measure ofD, is

called vol and the measure onD,, induced by X is noted x. We assume

that x has a density, notedf , with respect to vol, and that the support of

X is a compact set notedSupp. Let (x1;::;Xk) 2 DK be a set of draws ofX .
The Dirac measure in pointa is de ned as:

 1ifa2u
aV) gitaz(u

P
Let = ¢ !(:l x; denotes the empirical measure of the set of draws.

This section presents four non-parametric techniques of estimation of from
the set of draws (1;::;Xx). The estimated density at x in Dy is noted
fi(x) = F(x;x1;:5;x¢). The relevance of a density estimation technique
depends on several aspects. When the space allows it, the estimation tech-
nique should equally consider each directions and locations. This leads to an
isotropy and a homogeneity condition. In the kernel method for instance, a
kernel function K y; is placed at each observatiorx;. Firstly, in order to treat
directions equally, the function Ky, should be invariant under the isotropy
group of xj. Secondly, for another observationy;, functions Ky, and Ky,
should be similar up to the isometries that sendx; on x;. These consid-
erations strongly depend on the geometry of the space: if the space is not
homogeneous and the isotropy group is empty, these indi erence principles
have no meaning. Since the Siegel space is symmetric, it is homogeneous
and has a non empty isotropy group. Thus the density estimation technique
should be chosen accordingly. The convergence of the di erent estimation
techniques is widely studied. Results were rst obtained in the Euclidean
case, and are gradually extended to the probability densities on manifold, see
[2, 1, 3]. The last relevant aspect, is computational. Each estimation tech-
nique has its own computational framework, which presents pro and cons
given the di erent applications. For instance, the estimation by orthogonal
series presents an initial pre-processing, but provides a fast evaluation of the
estimated density in compact manifolds.

3.1 Histograms

The histogram is the simplest density estimation method. Given a partition
of the spaceD,, = [ jAj, the estimated density is given by

1

f/\(X 2 Al) = 7v0|(Ai) -

1Ai (Xj )
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where 15, stands for the indicator function of A;. Following the consid-
erations of the previous sections, the elements of the partition should rstly
be as isotropic as possible, and secondly as similar as possible to each other.
Regarding the problem of histograms, the case of the Siegel space is similar
to the case of the hyperbolic space. There exist various uniform polygo-
nal tilings on the Siegel space that could be used to compute histograms.
However, there are ratio 2 R for which there is no homothety. Thus it is
not always possible to scale the size of the bins to a given set of draws of
the random variable. Modifying the scale of the density estimation requires
then a change of the structure of the tiling. Thus the study of histograms
has not been deepened.

3.2 Orthogonal series

The estimation of the density f can be made out of the estimation of the
scalar product betweenf and a set of orthonormal functionsf g; g. The most
standard choice forfe g is the eigenfunctions of the Laplacian. When the
variable X takes its values in R", this estimation technique becomes the
characteristic function method. When the underlying space is compact, the
spectrum of the Laplacian operator is countable, while when the space is
non-compact, the spectrum is uncountable. In the rst case, the estima-
tion of the density f is made through the estimation of a sum, while in the
second case is made through the estimation an integral. In practice, the
second situation present a larger computational complexity. Unfortunately,
eigenfunctions of the Laplacian operator are known orD,, but not on com-
pact sub-domains. For this reason the study of this method has not been
deepened.

3.3 Kernels

LetK : R+ ! R4+ be a map which veri es the following properties:
) ge K@ixjj)dx =1,

i) ga XK(jjxjj)dx =0,

i) K(x> 1) =0,

iv) sup(K(x)) = K(0).

Let p 2 D,,. Generally, given a point p on a Riemannian manifold,
expp de nes an injective application only on a neighborhood of 0. The
Siegel space is a non-compact symmetric space and has thus only negative
sectional curvatures. Thus,expy is injective on the whole space. When the
tangent spaceTpDy is endowed with the local scalar product,

jjujj = d(p; expp(u))



where jj:jj is the Euclidean distance associated to the local scalar product
and d(:;:) is the Riemannian distance. The corresponding Lebesgue measure
of TpDn is noted Leby,. Let expy(Leby) denote the push-forward measure of
Lepp by expy. The function , de ned by:

dvol
dexp,(Leby)

is the density of the Riemannian measure oD,, with respect to the Lebesgue
measurel eb, after identi cation of Dp and TpDp induced by expp, see Fig.1.

p:g7 p(d)= (9); (6)

K

M

Figure 1. M is a Riemannian manifold, TxM is its tangent space atx. The
exponential application induces a volume change betweenTyM and M .

Given K and a positive radiusr, the estimator of f proposed by [1] is
de ned by:

X oy
ﬁ(_} 1 1 K d(x; x;)

Sk M, (x) r 0

The corrective factor , (x) ! is necessary since the kernek originally
integrates to one with respect to the Lebesgue measure, instead of the Rie-
mannian measure. It can be noted that this estimator is the usual kernel
estimator in the case of Euclidean space. When the curvature of the space is
negative, which is the case of the Siegel space, the distribution placed over
each samplex; has x; as intrinsic mean. The following theorem provides
convergence rate of the estimator. It is a direct adaptation of theorem 3L
of [1].

Theorem 3.1. Let (M ;g) be a Riemannian manifold of dimensionn and
its Riemannian volume measure. LetX be a random variable taking its
values in a compact subse€C of (M ;g). Let O<r rinj » Whererij, is the
in mum of the injectivity radius on C. Assume the law ofX has a twice
di erentiable density f with respect to the Riemannian volume measure. Let
f}. be the estimator de ned in Eqg. 7. The exist a constantC; such that
z

Exyi [(F () Fi(x))?]d Cf(krinﬂ“) (8)
x2M

8



Ifr ki,

o Expn [(F () fk()2d = Ok 77) (9)

Proof. See appendix A. O

Since the Siegel space has negative sectional curvaturasg,; =+ 1 . It
can be easily veri ed that for an isometry  we have:

e x muxe) = fi( (X); (X)) (Xk)):
Each location and direction are processed as similarly as possible.

In order to obtain the explicit expression of the estimator one must
rst have the explicit expression of the Riemannian exponential, its inverse,
and of the function ,, see Eq. 6-7. These expressions are dicult and
sometimes impossible to obtain on general Riemannian manifolds. In the
case of the Siegel space, the symmetric structure makes the computation
possible. Since the space is homogeneous, the computation can be made at
the origin il 2 H, or 0 2 D, and transported to the whole space. In the
present work, the random variable lays inD,,. However in the literature
the Cartan and lwasawa decompaositions are usually given for the isometry
group of H,. Thus our computation starts in H,, before moving toD,,.

The Killing form on the Lie algebra sp(n; R) of the isometry group of
Hn induces a scalar product onp. This scalar product can be transported
on exp(p) by left multiplication. This operation gives exp(p) a Riemannian
structure. It can be shown that on this Riemannian manifold, the Rie-
mannian exponential at the identity coincides with the group exponential.
Furthermore,

exp(p) ! H n

g 70 gl (10)
is a bijective isometry, up to a scaling factor. Since the volume change
p Is invariant under rescaling of the metric, this scaling factor has no im-
pact. Thus Hp can be identi ed with exp(p) and expj 21, with expj,. The
expression of the Riemannian exponential is di cult to obtain in general,
however it boils down to the group exponential in the case of symmetric
spaces. This is the main element of the computation of ,. The Riemannian
volume measure onexp(p) is noted vol® Let

K a! p
(k;H) 7! Adg(H)



Let a* be the diagonal matrices with strictly decreasing positive eigen-
values. Let * be the set of positive roots ofsp(n; R) as described in [18]
page 282,

T=fe+e;i jog[fe eg;i<jg

whereeg; (H) is the i-th diagonal term of the diagonal matrix H. Let C;(E) be
the set of continuous compactly supported function on the spacd. In [19]
is given page 73 that for allt 2 C¢(p), there exists ¢; > 0 such that
Z Z Z v
t(Y)dY = ¢ t( (k;H)) (H)dkdH; (11)
p K af 5 4

wheredY is a Lebesgue measure on the coe cientsof . Letp= (K a").
2 " never vanishes oma* and pnp has a null measure. Thus
z v Z Z
t(Y) —dY=q¢ t(Adk(H))dkdH; (12)
p 9 + (HY) K a*
where Hy is the point in a* such that there exists k in K such that
(k;Hy) = Y. Calculation in [19] page 73 also gives that for alt 2 C(p),
there existsc, > 0 such that
z Z Z Z

t(g)dg = cz t(kz:exp(Adk, (H))) J (H)dkidHdkz;  (13)
Sp(n;R) K a K

where dg is the Haar measure onSp(n; R) and

JH) = Y e e M)
2 +
= 20" sinh( (H)):
2 +
Thus for all t 2 C.(Sp(n; R)=K),
z zZ Z
t(x)dx = ¢, t(exp(Adk(H))) J (H)dkdH; (14)
Sp(n;R)=K K af

wheredx is the invariant measure onSp(n; R)=K . After identifying Sp(n; R)=K
and exp(p) the Riemannian measure onexp(p) coincides with the invariant
measure onSp(n; R)=K. Thus for all t 2 C.(exp(p)),
Z Z Z
t(x)dvol®= ¢, t(exp(Ady(H))) J (H)dkdH: (15)
exp(p) K a*
Using the notation Hy of Eq. 12,

10



4 v 1 Z Z

t(exp(Y))JI(Hy) —dY =¢ t(exp(Adk(H)))J (H)dkdH:
P o+ (HY) K a*
(16)
Combining Eqg. 15 and Eqg. 16 we obtain that existscz such that
A Z
Y sinh( (H
texpy)) | SMCHYD Gy oo tx)dvol®  (17)
. , . (Hy) exp(p)
The term w can be extended by continuity ona thus
Z Z
Y .
texpty)) | SMNCHYD Gy - o t)dvol®  (18)
p o (HY) exp(p)

Let dY be the Lebesgue measure corresponding to the metric. Then the
exponential application does not introduce a volume change at @ p. Since

Ho =0 and W H!I o 1, we havecs = 1. Let log denote the inverse of

the exponential applicaﬁon. We have

dy - ) (Hy)

+

Since from Eg. 10 is an isometry up to a scaling factor, ifY 2 p and
C (exp(Y))C = expo(u 2 ToDy), then

dlog (vol)
dLelyp

where Leby refers to the Lebesgue measure on the tangent spadgDy, as in
Eq. 6. GivenZ 2 Dy, Hz from Eq. 4 veries C (exp(Ady(Hz))C 1= Z
for somek in K. Thus

_ dlog (vol9

(u) qy

(Y);

Y .
@)= 290D pq (= T S,
5 4
We have then
Y gj : Y g : .
o(2) = | smh.( i) S|nhi(+.+ i)

ST I ]
where the (i) are described in section 2.2. GiverZi;Z, 2 D,
2,(Z2) = o(9,:Z2)

where gzl1 is de ned in Eq. 3. Itis thus possible to use the density estimator
de ned in Eqg. 7. Indeed,

11



Yoo g Y i K((ZX ')
sinh(i ), , sinh(i + ) '

iz =

K (19)

where the (i) are the diagonal elements oH 6,12y
e

4  Application to radar processing

4.1 Radar data

In STAP radar processing, the signal is formed by a succession of matriX
representing the realization of a temporal and spatial process. LeBy.,, be
the set of positive de nite block Teoplitz matrices composed ofn  n blocks
of m m matrices (PD BT). For a stationary signal the autocorrelation
matrix R is PD BT, see [11]. Authors of [11] proposed a generalization of
Verblunsky coe cients and de ned a parametrization of PD BT matrices,

Bim ! Sym* DM !
R 70 (Po; 15 m 1)
in which the metric induced by the Kahler potential is the product metric
of an a ne invariant metric on Sym* and m 1 times the metric of the
Siegel disk, up to a scaling factor. Among other references, positive de nite

block Teoplitz matrices have been studied in the context of STAP-radar
processing in [5, 6, 7].

(20)

4.2 Experimental results

In this section we show density estimation results of the marginal parame-
ters . For the sake of visualization, only the Siegel diskD; is considered.
Recall that D; coincides with the Poincae disk. The results are partly ex-
tracted from the conference paper [17]. Data used in the experimental tests
are radar observations from THALES X-band Radar, recorded during 2014
eld trials campaign at Toulouse Blagnac Airport for European FP7 UFO
study (Ultra-Fast wind sensOrs for wake-vortex hazards mitigation). Data
are representative of Turbulent atmosphere monitored by radar. Fig. 2-3
illustrate the density estimation of six coe cients on the Poincae unit disk.
Fig. 2 correspond to a clear environment and Fig. 3 to a rainy environment.
The densities are individually re-scaled for visualization purposes. For each

12



&

1 2 3 4 5 6

Figure 3: Estimation of the density of 6 coe cients ¢ under rainy condi-
tions. The expression of the used kernel i& (x) = 2(1 x?)?1,< . Densities
are rescaled for visual purpose.

environment the dataset is composed of 120 draws. The densities of the co-
ecients  are representative of di erent backgrounds. These information
on the background are expected to ease the detection of interesting targets.

1 2 3 4 5 6

Figure 2. Estimation of the density of 6 coe cients ¢ under clear condi-
tions. The expression of the used kernel i& (x) = 2(1 x2)21,< . Densities
are rescaled for visual purpose.

5 Conclusion

Three non parametric density estimation techniques have been considered.
The main advantage of histograms in the Euclidean context is there sim-
plicity of use. This make histograms an interesting tool despite the fact
that they do not present optimal convergence rate. On the Siegel space,
histograms loses their simplicity advantage. They were thus not deeply
studied. The orthogonal series density estimation also present technical dis-
advantages on the Siegel space. Indeed, the series become integrals which
make the numerical computation of the estimator more di cult than in the

13



Euclidean case. On the other hand, the use of the kernel density estimator
does not present major di erences with the Euclidean case. The convergence
rate obtained in [1] can be extended to compactly supported random vari-
ables on non compact Riemannian manifolds. Furthermore the corrective
term whose computation is required to use Euclidean kernels on Rieman-
nian manifolds turns out to have a reasonably simple expression. Our future
e orts will concentrate on the use of kernel density estimation on the Siegel
space in radar signal processing. We strongly believe that the estimation of
the densities of the  will provide a interesting description of the di erent
backgrounds.

The authors would like to thank Salem Said, Michal Zidor and Dmitry
Gourevitch for the help they provided in the understanding of symmetric
spaces and the Siegel space.

A Demonstration of theorem 3.1

Lemma A.1l. Let (M;g) be a Riemannian manifold, letC be a compact
subset ofM and let U be a relatively compact open subset dfl containing

C. Then there is a compact Riemannian manifold(M g9 such thatU is

an open subset oM © the inclusioni : U | M?%is a di eomorphism onto

its image andg®= g on U.

Proof. We can assume thatM is not compact. Letf : M ! R be smooth
function M which tends to +1 at in nity. Since U is compact, f (]

1 ;a]) contains U for a large enough. By Sard Theorem there exists a
value a 2 R such that f (a) contains no critical point of f and such that
f Q1 ;a]) containsU. Itfollowsthat N = f (] 1 ;a])isa submanifold
with boundary of M. Sincef tends to +1 at innity N is compact as
well as its boundary @N= f (fag). Call M°the double of N. It is a
compact manifold which contains N such that the inclusioni : N ! M?%is
a di eomorphism onto its image (see [21], Theorem 5.9 and De nition 5.10
). Choose any metricgg on M % Consider two open subset3V, and W5 in
M %and two smooth functionsfy;f»: M2l [0;1] such that

U W; W; W, W, intN

the interior of N,
fix)=1
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on W, vanishes outside ofW,, and
fo(x) = 1
outside W4 and vanishes inU. De ne g°on M ° by

9°= f19+ f20o

on N and
9°= fago

outside of N. Sincefi+ f, > 0, g%is positive de nite everywhere on M °.
Sincef 1 vanishes outside ofWs,, g°is smooth onM ©. Finally, since f1 = 1
andf,=0o0n U, g°= gonU. O

We can now prove theorem 3.1. LetX be a random variable as in
theorem 3.1. Following the notations of the theorem and the lemma, let
U=1fx2M;d(x;C)<riyg. U is open, relatively compact and contains
C. Let (M %g9 be as in the lemma. Letf" and f° be the kernel density
estimators de ned on M and M © respectively. Theorem 31 of [1] provides
the desired results forf? for r rnj ,» the support and the values on the
support of f2and f* coincide. Thus the desired result also hold forf".
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