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Abstract

Main techniques of probability density estimation on Riemannian

manifolds are reviewed in the case of the Siegel space. For computa-

tional reasons we chose to focus on the kernel density estimation. The

main result of the paper is the expression of Pelletier’s kernel density

estimator. The method is applied to density estimation of reflection

coefficients from radar observations.
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1 Introduction

Probability density estimation is a vast topic. There exists various standard
techniques in the Euclidean context, such as histograms, kernel methods,
or the characteristic function approach. These methods can sometimes be
transposed to the case of Riemannian manifolds. However, the transposition
often introduces additional computational efforts. This additional effort de-
pends on the method used and the nature of the manifold. The Siegel space
is a generalization of the hyperbolic space. It has a structure of symmetric
Riemannian manifold, which enables to adapt different density estimation
methods at a reasonable cost. Convergence rates of the density estimation
using kernels and orthogonal series were progressively generalized to Rie-
mannian manifolds, see [2][1]. The Siegel space appears in radar processing
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in the study of Toeplitz block Toeplitz matrices, whose blocks represent co-
variance matrices of the signal, see [5, 6, 7]. Information geometry is now
a standard framework in radar processing, see [4, 5, 6, 7, 8, 9, 10]. The
information geometry on positive definite Teoplitz block Teoplitz matrices
is directly related to the metric on the Siegel space, see [11]. Indeed these
Toeplitz block Toeplitz matrices can be represented by a symmetric positive
definite matrix and a set of coefficients laying in the Siegel disk. The metric
considered on Toeplitz block Toeplitz matrices is a product metric between
a metric on symmetric positive definite matrices and the Siegel disk metric,
see [11]. One already encounters the problem of density estimation in the
hyperbolic space for electrical impedance [3], networks [16] and radar sig-
nals [17]. In [12] was proposed a generalization of the Gaussian law on the
hyperbolic space. Apart from [13], where authors propose a generalization
of the Gaussian law, probability density estimation on the Siegel space has
not yet been addressed. The contributions of the paper are the following.
We review the main non parametric density estimation techniques on the
Siegel disk. We provide some rather simple explicit expressions of the ker-
nels proposed by Pelletier in [1]. These expressions makes the kernel density
estimation the most adapted method. We present visual results of estimated
densities in the simple case where the Siegel disk correspond to the Poincaré
disk. The paper begins with an introduction to the Siegel space in Section 2.
Section 3 reviews the main non-parametric density estimation techniques on
the Siegel space. Section 4 presents an application to radar data estimation.

2 The Siegel space

This section presents facts about the Siegel space. The interested reader
can find more details in [20, 18]

2.1 The Siegel upper half space

The Siegel upper half space is a generalization of the Poincaré upper half
space. Let Sym(n) be the space of real symmetric matrices of size n×n and
Sym+(n) the set of real symmetric positive definite matrices of size n× n.
The Siegel upper half space is defined by

Hn = {Z = X + iY |X ∈ Sym(n), Y ∈ Sym+(n)}

Hn is equipped with the following metric

ds = 2.tr(Y −1dZY −1dZ)
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The set of real symplectic matrices Sp(n,R) is defined by

g ∈ Sp(n,R)⇔ gtJg = J

where

J =

(
0 In
−In 0

)
and In is the n× n identity matrix. Sp(n,R) is a subgroup of SL2n(R), the

set of 2n × 2n invertible matrices of determinant 1. Let g =

(
A B
C D

)
∈

Sp(n,R). The metric ds is invariant under the following action of Sp(n,R),

g.Z = (AZ +B)(CZ +D)−1.

This action is transitive, i.e.

∀Z ∈ Hn,∃g ∈ Sp(n,R), g.iI = Z.

The stabilizer K of iI is the set of elements g of Sp(n,R) whose action
leaves iI fixed. K is a subgroup of Sp(n,R) called the isotropy group. We
can verify that

K =

{(
A B
−B A

)
, A+ iB ∈ SU(n)

}
.

A symmetric space is a Riemannian manifold where the reversal of the
geodesics is well defined and is an isometry. Formally, expp(u) 7→ expp(−u)
is an isometry for each p on the manifold, where u is a vector in the tangent
space at p, and expp the Riemannian exponential application at p. In other
words, the symmetry around each point is an isometry. Hn is a symmetric
space, see [18]. The structure of a symmetric space can be studied through
its isometry group and the Lie algebra of its isometry group. The present
work will make use of the Cartan and Iwasawa decompositions of the Lie
algebra of Sp(n,R). Let sp(n,R) be the Lie algebra of Sp(n,R). Given A,

B and C three real n by n matrices, let us write

(
A B
C −At

)
= (A,B,C).

We have that

sp(n,R) = {(A,B,C)|B and C symmetric}

The Cartan decomposition of sp(n,R) is given by

sp(n,R) = t⊕ p

where

t = {(A,B,−B)|B symmetric and A skew-symmetric}
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p = {(A,B,B)|A,B, symmetric} (1)

The Iwasawa decomposition is given by

sp(n,R) = t⊕ a⊕ n

where
a = {(H, 0, 0)|H diagonal}

n = {(A,B, 0)|A upper triangular with 0 on the diagonal , B symmetric}

It can be shown that
p = ∪k∈KAdk(a) (2)

where Ad is the adjoint representation of Sp(n,R).

2.2 The Siegel disk

The Siegel disk Dn is the set of complex matrices {Z|I − Z∗Z ≥ 0} where
≥ stands for the Loewner order. Recall that for A and B to Hermitian
matrices, A ≥ B according to the Loewner order means that A − B is
positive definite. The transformation

Z ∈ Hn 7→ (Z − iI)(Z + iI)−1 ∈ Dn

is an isometry between the Siegel upper half space and the Siegel disk. Let

C =

(
I −iI
I iI

)
. The application g ∈ Sp(n,R) 7→ CgC−1 identifies the

set of isometries of Hn and of Dn. Thus, it can be shown that a matrix

g =

(
A B

A B

)
∈ Sp(n,C) acts isometrically on Dn by

g.Z = (AZ +B)(AZ +B)−1

where A stands for the conjugate of A. The point iI in Hn is identified
with the null matrix noted 0 in Dn. Let Z ∈ Dn. There exists P a diagonal
matrix with decreasing positive real entries and U a unitary matrix such
that Z = UPU t. Let τ1 ≥ ... ≥ τn be such that

P =

th(τ1)
. . .

th(τn)

 .

Let

A0 =

ch(τ1)
. . .

ch(τn)

 , B0 =

sh(τ1)
. . .

sh(τn)
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and

gZ =

(
U 0

0 U

)
.

(
A0 B0

A0 B0

)
.

It can be shown that

gZ ∈ Sp(n,C) and gZ .0 = Z (3)

We provide now a correspondence between the elements of Dn and the
elements of p defined in Eq. 1. Let

HZ =



τ1

. . .

τn
−τ1

. . .

−τn


∈ a (4)

and

aZ =



eτ1

. . .

eτn

e−τ1

. . .

e−τn


∈ A = exp(a).

It can be shown that there exists k ∈ K such that

Cexp(Adk(HZ))C−1.0 = Z

or equivalently
CkaZkC

−1.0 = Z.

Recall that Eq. 2 gives Adk(H) ∈ p and kak ∈ exp(p). The distance between
Z and 0 in Dn is given by

d(0, Z) =
(

2
∑

τ2
i

)1/2
, (5)

see [18] page 292.
!!Negative curvature of the Siegle space!!
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3 Non parametric density estimation on the Siegel

space

Let Ω be a space, endowed with a σ-algebra and a probability measure p.
Let X be a random variable Ω → Dn. The Riemannian measure of Dn is
called vol and the measure on Dn induced by X is noted µX . We assume
that µX has a density, noted f , with respect to vol, and that the support of
X is a compact set noted Supp. Let (x1, .., xk) ∈ Dkn be a set of draws of X.

The Dirac measure in point a is defined as:

δa(U) :

{
1 if a ∈ U
0 if a ∈ {U

Let µk = 1
k

∑k
i=1 δxi denotes the empirical measure of the set of draws.

This section presents four non-parametric techniques of estimation of f from
the set of draws (x1, .., xk). The estimated density at x in Dn is noted
f̂k(x) = f̂(x, x1, ..., xk). The relevance of a density estimation technique
depends on several aspects. When the space allows it, the estimation tech-
nique should equally consider each directions and locations. This leads to an
isotropy and a homogeneity condition. In the kernel method for instance, a
kernel function Kxi is placed at each observation xi. Firstly, in order to treat
directions equally, the function Kxi should be invariant under the isotropy
group of xi. Secondly, for another observation xj , functions Kxi and Kxj

should be similar up to the isometries that send xi on xj . These consid-
erations strongly depend on the geometry of the space: if the space is not
homogeneous and the isotropy group is empty, these indifference principles
have no meaning. Since the Siegel space is symmetric, it is homogeneous
and has a non empty isotropy group. Thus the density estimation technique
should be chosen accordingly. The convergence of the different estimation
techniques is widely studied. Results were first obtained in the Euclidean
case, and are gradually extended to the probability densities on manifold, see
[2, 1, 3]. The last relevant aspect, is computational. Each estimation tech-
nique has its own computational framework, which presents pro and cons
given the different applications. For instance, the estimation by orthogonal
series presents an initial pre-processing, but provides a fast evaluation of the
estimated density in compact manifolds.

3.1 Histograms

The histogram is the simplest density estimation method. Given a partition
of the space Dn = ∪iAi, the estimated density is given by

f̂(x ∈ Ai) =
1

vol(Ai)

k∑
j=1

1Ai(xj)
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where 1Ai stands for the indicator function of Ai. Following the consid-
erations of the previous sections, the elements of the partition should firstly
be as isotropic as possible, and secondly as similar as possible to each other.
Regarding the problem of histograms, the case of the Siegel space is similar
to the case of the hyperbolic space. There exist various uniform polygo-
nal tilings on the Siegel space that could be used to compute histograms.
However, there are ratio λ ∈ R for which there is no homothety. Thus it is
not always possible to scale the size of the bins to a given set of draws of
the random variable. Modifying the scale of the density estimation requires
then a change of the structure of the tiling. Thus the study of histograms
has not been deepened.

3.2 Orthogonal series

The estimation of the density f can be made out of the estimation of the
scalar product between f and a set of orthonormal functions {ej}. The most
standard choice for {ej} is the eigenfunctions of the Laplacian. When the
variable X takes its values in Rn, this estimation technique becomes the
characteristic function method. When the underlying space is compact, the
spectrum of the Laplacian operator is countable, while when the space is
non-compact, the spectrum is uncountable. In the first case, the estima-
tion of the density f is made through the estimation of a sum, while in the
second case is made through the estimation an integral. In practice, the
second situation present a larger computational complexity. Unfortunately,
eigenfunctions of the Laplacian operator are known on Dn but not on com-
pact sub-domains. For this reason the study of this method has not been
deepened.

3.3 Kernels

Let K : R+ → R+ be a map which verifies the following properties:
i)
∫
Rd K(||x||)dx = 1,

ii)
∫
Rd xK(||x||)dx = 0,

iii) K(x > 1) = 0,
iv) sup(K(x)) = K(0).

Let p ∈ Dn. Generally, given a point p on a Riemannian manifold,
expp defines an injective application only on a neighborhood of 0. The
Siegel space is a non-compact symmetric space and has thus only negative
sectional curvatures. Thus, expp is injective on the whole space. When the
tangent space TpDn is endowed with the local scalar product,

||u|| = d(p, expp(u))
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where ||.|| is the Euclidean distance associated to the local scalar product
and d(., .) is the Riemannian distance. The corresponding Lebesgue measure
of TpDn is noted Lebp. Let exp∗p(Lebp) denote the push-forward measure of
Lepp by expp. The function θp defined by:

θp : q 7→ θp(q) =
dvol

dexp∗p(Lebp)
(q), (6)

is the density of the Riemannian measure of Dn with respect to the Lebesgue
measure Lebp after identification of Dn and TpDn induced by expp, see Fig.1.

Figure 1: M is a Riemannian manifold, TxM is its tangent space at x. The

exponential application induces a volume change θx between TxM and M.

Given K and a positive radius r, the estimator of f proposed by [1] is
defined by:

f̂k =
1

k

∑
i

1

rn
1

θxi(x)
K
(
d(x, xi)

r

)
. (7)

The corrective factor θxi(x)−1 is necessary since the kernel K originally
integrates to one with respect to the Lebesgue measure, instead of the Rie-
mannian measure. It can be noted that this estimator is the usual kernel
estimator in the case of Euclidean space. When the curvature of the space is
negative, which is the case of the Siegel space, the distribution placed over
each sample xi has xi as intrinsic mean. The following theorem provides
convergence rate of the estimator. It is a direct adaptation of theorem 3.1
of [1].

Theorem 3.1. Let (M, g) be a Riemannian manifold of dimension n and

µ its Riemannian volume measure. Let X be a random variable taking its

values in a compact subset C of (M, g). Let 0 < r ≤ rinj, where rinj is the

infimum of the injectivity radius on C. Assume the law of X has a twice

differentiable density f with respect to the Riemannian volume measure. Let

f̂k be the estimator defined in Eq. 7. The exist a constant Cf such that∫
x∈M

Ex1,...,xk [(f(x)− f̂k(x))2]dµ ≤ Cf (
1

krn
+ r4) (8)
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If r ∼ k
−1
n+4 ,∫

x∈M
Ex1,...,xk [(f(x)− f̂k(x))2]dµ = O(k−

4
n+4 ) (9)

Proof. See appendix A.

Since the Siegel space has negative sectional curvatures, rinj = +∞. It
can be easily verified that for an isometry α we have:

f̂k(x, x1, ..., xk) = f̂k(α(x), α(x1), ..., α(xk)).

Each location and direction are processed as similarly as possible.

In order to obtain the explicit expression of the estimator one must
first have the explicit expression of the Riemannian exponential, its inverse,
and of the function θp, see Eq. 6-7. These expressions are difficult and
sometimes impossible to obtain on general Riemannian manifolds. In the
case of the Siegel space, the symmetric structure makes the computation
possible. Since the space is homogeneous, the computation can be made at
the origin iI ∈ Hn or 0 ∈ Dn and transported to the whole space. In the
present work, the random variable lays in Dn. However in the literature
the Cartan and Iwasawa decompositions are usually given for the isometry
group of Hn. Thus our computation starts in Hn before moving to Dn.

The Killing form on the Lie algebra sp(n,R) of the isometry group of
Hn induces a scalar product on p. This scalar product can be transported
on exp(p) by left multiplication. This operation gives exp(p) a Riemannian
structure. It can be shown that on this Riemannian manifold, the Rie-
mannian exponential at the identity coincides with the group exponential.
Furthermore,

φ : exp(p) → Hn
g 7→ g.iI

(10)

is a bijective isometry, up to a scaling factor. Since the volume change
θp is invariant under rescaling of the metric, this scaling factor has no im-
pact. Thus Hn can be identified with exp(p) and expiI∈Hn with exp|p. The
expression of the Riemannian exponential is difficult to obtain in general,
however it boils down to the group exponential in the case of symmetric
spaces. This is the main element of the computation of θp. The Riemannian
volume measure on exp(p) is noted vol′. Let

ψ : K × a → p
(k,H) 7→ Adk(H)
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Let a+ be the diagonal matrices with strictly decreasing positive eigen-
values. Let Λ+ be the set of positive roots of sp(n,R) as described in [18]
page 282,

Λ+ = {ei + ej , i ≤ j} ∪ {ei − ej , i < j}

where ei(H) is the i-th diagonal term of the diagonal matrixH. Let Cc(E) be
the set of continuous compactly supported function on the space E. In [19]
is given page 73 that for all t ∈ Cc(p), there exists c1 > 0 such that∫

p
t(Y )dY = c1

∫
K

∫
a+
t(ψ(k,H))

∏
λ∈Λ+

λ(H)dkdH, (11)

where dY is a Lebesgue measure on the coefficients of Y . Let p̃ = ψ(K×a+).
λ ∈ Λ+ never vanishes on a+ and p \ p̃ has a null measure. Thus∫

p̃
t(Y )

∏
λ∈Λ+

1

λ(HY )
dY = c1

∫
K

∫
a+
t(Adk(H))dkdH, (12)

where HY is the point in a+ such that there exists k in K such that
ψ(k,HY ) = Y . Calculation in [19] page 73 also gives that for all t ∈ Cc(p),
there exists c2 > 0 such that∫

Sp(n,R)
t(g)dg = c2

∫
K

∫
a+

∫
K
t(k2.exp(Adk1(H)))J(H)dk1dHdk2, (13)

where dg is the Haar measure on Sp(n,R) and

J(H) =
∏
λ∈Λ+

eλ(H) − e−λ(H)

= 2|Λ
+|
∏
λ∈Λ+

sinh(λ(H)).

Thus for all t ∈ Cc(Sp(n,R)/K),∫
Sp(n,R)/K

t(x)dx = c2

∫
K

∫
a+
t(exp(Adk(H)))J(H)dkdH, (14)

where dx is the invariant measure on Sp(n,R)/K. After identifying Sp(n,R)/K
and exp(p) the Riemannian measure on exp(p) coincides with the invariant
measure on Sp(n,R)/K. Thus for all t ∈ Cc(exp(p)),∫

exp(p)
t(x)dvol′ = c2

∫
K

∫
a+
t(exp(Adk(H)))J(H)dkdH. (15)

Using the notation HY of Eq. 12,
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∫
p̃
t(exp(Y ))J(HY )

∏
λ∈Λ+

1

λ(HY )
dY = c1

∫
K

∫
a+
t(exp(Adk(H)))J(H)dkdH.

(16)
Combining Eq. 15 and Eq. 16 we obtain that exists c3 such that∫

p̃
t(exp(Y ))

∏
λ∈Λ+

sinh(λ(HY ))

λ(HY )
dY = c3

∫
exp(p)

t(x)dvol′. (17)

The term sinh(λ(H))
λ(H) can be extended by continuity on a thus∫

p
t(exp(Y ))

∏
λ∈Λ+

sinh(λ(HY ))

λ(HY )
dY = c3

∫
exp(p)

t(x)dvol′. (18)

Let dY be the Lebesgue measure corresponding to the metric. Then the
exponential application does not introduce a volume change at 0 ∈ p. Since
H0 = 0 and sinh(λ(H))

λ(H) −→
H→0

1, we have c3 = 1. Let log denote the inverse of

the exponential application. We have

dlog∗(vol′)

dY
=
∏
λ∈Λ+

sinh(λ(HY ))

λ(HY )
.

Since φ from Eq. 10 is an isometry up to a scaling factor, if Y ∈ p and
Cφ(exp(Y ))C−1 = exp0(u ∈ T0Dn), then

dlog∗(vol)

dLeb0
(u) =

dlog∗(vol′)

dY
(Y ),

where Leb0 refers to the Lebesgue measure on the tangent space T0Dn as in
Eq. 6. Given Z ∈ Dn, HZ from Eq. 4 verifies Cφ(exp(Adk(HZ)))C−1 = Z
for some k in K. Thus

θ0(Z) =
dlog∗(vol′)

dY
(Adk(HZ)) =

∏
λ∈Λ+

sinh(λ(HZ))

λ(HZ)
.

We have then

θ0(Z) =
∏
i<j

sinh(τi − τj)
τi − τj

∏
i≤j

sinh(τi + τj)

τi + τj

where the (τi) are described in section 2.2. Given Z1, Z2 ∈ Dn,

θZ1(Z2) = θ0(g−1
Z1
.Z2)

where g−1
Z1

is defined in Eq. 3. It is thus possible to use the density estimator
defined in Eq. 7. Indeed,
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1

θZ1(Z2)
K(d(Z1, Z2)) =

∏
i<j

τi − τj
sinh(τi − τj)

∏
i≤j

τi + τj
sinh(τi + τj)

K((2
∑

τ2
i )1/2)

(19)
where the (τi) are the diagonal elements of Hg−1

Z1
.Z2

.

4 Application to radar processing

4.1 Radar data

In STAP radar processing, the signal is formed by a succession of matrix X
representing the realization of a temporal and spatial process. Let B+

n,m be
the set of positive definite block Teoplitz matrices composed of n×n blocks
of m × m matrices (PD BT). For a stationary signal the autocorrelation
matrix R is PD BT, see [11]. Authors of [11] proposed a generalization of
Verblunsky coefficients and defined a parametrization of PD BT matrices,

B+
n,m → Sym+ × Dm−1

n

R 7→ (P0,Ω1, ..,Ωm−1)
(20)

in which the metric induced by the Kähler potential is the product metric
of an affine invariant metric on Sym+ and m − 1 times the metric of the
Siegel disk, up to a scaling factor. Among other references, positive definite
block Teoplitz matrices have been studied in the context of STAP-radar
processing in [5, 6, 7].

4.2 Experimental results

In this section we show density estimation results of the marginal parame-
ters Ωk. For the sake of visualization, only the Siegel disk D1 is considered.
Recall that D1 coincides with the Poincaré disk. The results are partly ex-
tracted from the conference paper [17]. Data used in the experimental tests
are radar observations from THALES X-band Radar, recorded during 2014
field trials campaign at Toulouse Blagnac Airport for European FP7 UFO
study (Ultra-Fast wind sensOrs for wake-vortex hazards mitigation). Data
are representative of Turbulent atmosphere monitored by radar. Fig. 2-3
illustrate the density estimation of six coefficients on the Poincaré unit disk.
Fig. 2 correspond to a clear environment and Fig. 3 to a rainy environment.
The densities are individually re-scaled for visualization purposes. For each
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Ω1 Ω2 Ω3 Ω4 Ω5 Ω6

Figure 3: Estimation of the density of 6 coefficients Ωk under rainy condi-

tions. The expression of the used kernel is K(x) = 3
π (1−x2)21x<1. Densities

are rescaled for visual purpose.

environment the dataset is composed of 120 draws. The densities of the co-
efficients Ωk are representative of different backgrounds. These information
on the background are expected to ease the detection of interesting targets.

Ω1 Ω2 Ω3 Ω4 Ω5 Ω6

Figure 2: Estimation of the density of 6 coefficients Ωk under clear condi-

tions. The expression of the used kernel is K(x) = 3
π (1−x2)21x<1. Densities

are rescaled for visual purpose.

5 Conclusion

Three non parametric density estimation techniques have been considered.
The main advantage of histograms in the Euclidean context is there sim-
plicity of use. This make histograms an interesting tool despite the fact
that they do not present optimal convergence rate. On the Siegel space,
histograms loses their simplicity advantage. They were thus not deeply
studied. The orthogonal series density estimation also present technical dis-
advantages on the Siegel space. Indeed, the series become integrals which
make the numerical computation of the estimator more difficult than in the

13



Euclidean case. On the other hand, the use of the kernel density estimator
does not present major differences with the Euclidean case. The convergence
rate obtained in [1] can be extended to compactly supported random vari-
ables on non compact Riemannian manifolds. Furthermore the corrective
term whose computation is required to use Euclidean kernels on Rieman-
nian manifolds turns out to have a reasonably simple expression. Our future
efforts will concentrate on the use of kernel density estimation on the Siegel
space in radar signal processing. We strongly believe that the estimation of
the densities of the Ωk will provide a interesting description of the different
backgrounds.

The authors would like to thank Salem Said, Michal Zidor and Dmitry
Gourevitch for the help they provided in the understanding of symmetric
spaces and the Siegel space.

A Demonstration of theorem 3.1

Lemma A.1. Let (M, g) be a Riemannian manifold, let C be a compact

subset of M and let U be a relatively compact open subset of M containing

C. Then there is a compact Riemannian manifold (M ′, g′) such that U is

an open subset of M ′, the inclusion i : U ↪→ M ′ is a diffeomorphism onto

its image and g′ = g on U .

Proof. We can assume that M is not compact. Let f : M → R be smooth

function M which tends to +∞ at infinity. Since U is compact, f−1(] −
∞, a[) contains U for a large enough. By Sard Theorem there exists a

value a ∈ R such that f−1(a) contains no critical point of f and such that

f−1(]−∞, a[) contains U . It follows that N = f−1(]−∞, a]) is a submanifold

with boundary of M . Since f tends to +∞ at infinity N is compact as

well as its boundary ∂N = f−1({a}). Call M ′ the double of N . It is a

compact manifold which contains N such that the inclusion i : N ↪→ M ′ is

a diffeomorphism onto its image (see [21], Theorem 5.9 and Definition 5.10

). Choose any metric g0 on M ′. Consider two open subsets W1 and W2 in

M ′ and two smooth functions f1, f2 : M ′ → [0, 1] such that

U ⊂W1 ⊂W 1 ⊂W2 ⊂W 2 ⊂ intN

the interior of N ,

f1(x) = 1
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on W 1, vanishes outside of W2, and

f2(x) = 1

outside W1 and vanishes in U . Define g′ on M ′ by

g′ = f1g + f2g0

on N and

g′ = f2g0

outside of N . Since f1 + f2 > 0, g′ is positive definite everywhere on M ′.

Since f1 vanishes outside of W2, g′ is smooth on M ′. Finally, since f1 = 1

and f2 = 0 on U , g′ = g on U .

We can now prove theorem 3.1. Let X be a random variable as in
theorem 3.1. Following the notations of the theorem and the lemma, let
U = {x ∈M, d(x,C) < rinj}. U is open, relatively compact and contains

C. Let (M′, g′) be as in the lemma. Let f̂ and f̂ ′ be the kernel density
estimators defined on M and M ′ respectively. Theorem 3.1 of [1] provides
the desired results for f̂ ′. for r ≤ rinj , the support and the values on the

support of f̂ ′ and f̂ coincide. Thus the desired result also hold for f̂ .
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