B. Pelletier, Kernel density estimation on Riemannian manifolds, Statistics & Probability Letters, vol.73, issue.3, pp.297-304, 2005.
DOI : 10.1016/j.spl.2005.04.004

H. Hendriks, Nonparametric estimation of a probability density on a Riemannian manifold using Fourier expansions. The Annals of Statistics, pp.832-849, 1990.

S. Huckemann, P. Kim, J. Koo, and A. Munk, Mobius deconvolution on the hyperbolic plan with application to impedance density estimation. The Annals of Statistics, pp.2465-2498, 2010.

F. Barbaresco, Robust Median-Based STAP in Inhomogeneous Secondary Data : Frechet Information Geometry of Covariance Matrices, 2nd French-Singaporian SONDRA Workshop on EM Modeling, New Concepts and Signal Processing For Radar Detection and Remote Sensing, pp.25-28, 2010.

F. Barbaresco, Robust statistical radar processing in Frchet metric space: OS-HDR-CFAR and OS-STAP processing in siegel homogeneous bounded domains, proceedings of IRS11, Proc. Int. Radar Conf, 2011.

F. Barbaresco, Information Geometry of Covariance Matrix: Cartan-Siegel Homogeneous Bounded Domains, Mostow/Berger Fibration and Fr?chet Median, 2012.
DOI : 10.1007/978-3-642-30232-9_9

F. Barbaresco, Information geometry manifold of Toeplitz Hermitian positive definite covariance matrices: Mostow/Berger fibration and Berezin quantization of Cartan-Siegel domains, Int. J. Emerging Trends in Signal Process. (IJETSP), vol.1, issue.3, 2013.

J. F. Degurse, L. Savy, J. P. Molinie, and S. Marcos, A Riemannian Approach for Training Data Selection in Space-Time Adaptive Processing Applications, Radar Symposium (IRS), vol.1, pp.319-324, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00933419

J. F. Degurse, L. Savy, and S. Marcos, Information Geometry for radar detection in heterogeneous environments, pp.21-26, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01102163

F. Barbaresco, Koszul Information Geometry and Souriau Geometric Temperature/Capacity of Lie Group Thermodynamics, Entropy, vol.41, issue.8, 2014.
DOI : 10.3390/e16084521

URL : http://doi.org/10.3390/e16084521

B. Jeuris and R. Vandebril, The K?hler Mean of Block-Toeplitz Matrices with Toeplitz Structured Blocks, SIAM Journal on Matrix Analysis and Applications, vol.37, issue.3, 2015.
DOI : 10.1137/15M102112X

S. Helgason, Differential geometry, Lie groups, and symmetric spaces, 1979.
DOI : 10.1090/gsm/034

P. Kim and D. Richards, Deconvolution Density Estimation on the Space of Positive Definite Symmetric Matrices, Nonparametric Statistics and Mixture Models, pp.147-168, 2008.
DOI : 10.1142/9789814340564_0010

D. Asta and C. Shalizi, Geometric network comparison. arXiv preprint, 2014.

E. Chevallier, F. Barbaresco, and J. Angulo, Probability Density Estimation on the Hyperbolic Space Applied to Radar Processing, Geometric Science of Information, pp.753-761, 2015.
DOI : 10.1007/978-3-319-25040-3_80

URL : https://hal.archives-ouvertes.fr/hal-01121090

A. Terras, Harmonic analysis on symmetric spaces and applications II, 2012.
DOI : 10.1007/978-1-4612-3820-1

R. Gangolli and V. S. Varadarajan, Harmonic analysis of spherical functions on real reductive groups
DOI : 10.1007/978-3-642-72956-0

C. L. Siegel, Symplectic Geometry, American Journal of Mathematics, vol.65, issue.1, pp.1-86, 1943.
DOI : 10.2307/2371774

J. Munkres, Elementary Differential Topology, Annals of Mathematics Studies-54, 1967.