Differentially Private Bayesian Programming

Abstract : We present PrivInfer, an expressive framework for writing and verifying differentially private Bayesian machine learning algorithms. Programs in PrivInfer are written in a rich functional probabilistic programming language with constructs for performing Bayesian inference. Then, differential privacy of programs is established using a relational refinement type system, in which refinements on probability types are indexed by a metric on distributions. Our framework leverages recent developments in Bayesian inference, probabilistic programming languages, and in relational refinement types. We demonstrate the expressiveness of PrivInfer by verifying privacy for several examples of private Bayesian inference.
Type de document :
Communication dans un congrès
Liste complète des métadonnées

Littérature citée [39 références]  Voir  Masquer  Télécharger

https://hal-mines-paristech.archives-ouvertes.fr/hal-01446970
Contributeur : Claire Medrala <>
Soumis le : jeudi 26 janvier 2017 - 14:54:31
Dernière modification le : mardi 13 août 2019 - 11:40:13
Document(s) archivé(s) le : vendredi 28 avril 2017 - 06:39:00

Fichier

A-656.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Gilles Barthe, Gian Pietro Farina, Marco Gaboardi, Emilio Jesús Gallego Arias, Andy Gordon, et al.. Differentially Private Bayesian Programming. The 23rd ACM Conference on Computer and Communications Security, Oct 2016, Vienne, Austria. pp.68-79 ⟨10.1145/2976749.2978371⟩. ⟨hal-01446970⟩

Partager

Métriques

Consultations de la notice

133

Téléchargements de fichiers

319