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Abstract. Inspired by the a contrario approach this paper proposes a way of setting the
threshold when using parsimonious path filters to detect thin curvilinear structures in im-
ages.
The a contrario approach, instead of modeling the structures to detect, models the noise
to detect structures deviating from the model. In this scope, we assume noise composed
of pixels that are independent random variables. Henceforth, cracks that are curvilinear
sequences of bright pixels (not necessarily connected) are detected as abnormal sequences
of bright pixels.
In the second part, a fast approximation of the solution based on parsimonious path openings
is shown.

Keywords: Mathematical morphology, parsimonious path filters, rank-max opening, a con-
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1 Introduction

The detection of thin, curvilinear elements is a frequent task in automated visual inspection to
detect cracks. Similar applications can be found in other image processing domains to detect the
blood vessels (medicine), facial wrinkles (cosmetology), neurites or DNA molecule chain (biology),
roads in satellite images, or a few others. An accurate detection of such structures that are thin,
curved, discontinuous and often rare and sometimes absent (in which case we want to avoid
false detection) from the images is a difficult problem. In mathematical morphology the operator
enhancing curvilinear, thin objects is the path opening.

However, the main difficulty to produce a binary results is to find a convenient value for
the subsequent thresholding. One solution, based on the same hypothesis formulated using the
a contrario model, and combined with the percolation, has been investigated by Aldea and Le
Hégarat-Mascle [1]. Long, thin structures are then detected as deviations from normality.

The same hypothesis of sparcity of defects is used throughout this paper. The principal contri-
bution here is the proposition of a method of identifying parameter values such that the detected
structures are perceptually significant. The principle is inspired from the idea of meaningful align-
ments proposed by Desolneux et al. [2], detecting perceptually significant, straight segments in
images. The perceptual significance stems from the Helmholtz principle stating that a perceptually
significant element is improbable to occur by chance. Any perceptual significant segment is hence
a deviation from randomness. The model proposed in [2] is based on the hypothesis of random dis-
tribution of the orientation of the isophote1 in noise. A perceptually significant segment is defined
as a sequence of isophotes aligned with the orientation of the segment. Notice that a perceptually
significant segment does not need to be contiguous.

In this work we extend the original model based on the orientation of isophotes to that of
the distribution of intensity in images, and from straight segments to curvilinear structures. As
well as in the case of the isophotes, the points do not necessarily need to be connected to form a
perceptually significant structure, but only sufficiently densely follow each another in a sequence.

1 normal to the gradient direction



This idea can be efficiently implemented using mathematical morphology that indeed possesses
an operator conceived for the detection of such structures. It is derived from the original concept
of the path opening, due to Buckley and Talbot [3,4], and formalized in Heijmans et al. [5]. Later,
Talbot and Appleton [6] propose a more efficient implementation and introduce incomplete path
openings robust to noise due to the capability to tolerate missing pixels. The originally exponential
complexity has been reduced later to a constant by Morard et al. [7] by limiting the search of paths
to only a relevant subset of all paths in an image and using a constant-time opening algorithm for
the filtering alongside these paths or a closing-opening to increase the robustnes to noise. Using
closing-opening instead of opening alone does not increase the complexity, and is indeed similar to
another version proposed by Cokelaer et al. [8] that tolerates gaps up to some maximal admissible
width.

The main contribution of the present paper is to set correct parameter values for parsimo-
nious path filters to detect perceptually meaningful structures longer than some chosen minimal
length. The morphological tool allowing to implement efficiently the above ideas is parsimonious
incomplete path opening applying a 1-D rank-max-opening alongside these paths.

2 The meaningfulness

According to the Helmholtz principle, an object is perceived as meaningful provided it is unlikely
for it to occur by chance. The complement of these structures is the background that we assume
random with a priory unknown distribution.

Definition 1 (ε-meaningful event (Desolneux et al. [2])). An even of type ”such configura-
tion of points has such property” is ε-meaningful if the expectation of the number of occurrences
in an image of this event is less than ε.

For an event to be meaningful one needs to consider ε� 1, in which case our perception is likely
to see it. Notice that the ε-meaningfulness is related to the statistical p-significance.

In the following we develop a framework to detect thin, curvilinear structures in gray-scale
images. These structures are perceived due to the deviation of their intensity from the normality.
They are either brighter or darker. We develop the framework for bright structures; dark structures
can be detected after inverting the image. In the simulated experiment Fig. 1 the sinusoidal curve
- composed of closely grouped points somewhat brighter than the surrounding - is perceived as
one object even though not necessarily contiguous. The difficulty to extract this structure is due
to that we do not know the parameters: i) the distribution of the noise, ii) how much the curve
points are brighter than the noise, iii) how densely these points populate this curve.

(a) (b) (c)

Fig. 1. a) a curvilinear structure in noise N (µ, σ2), b) points above the 88.2 quantile, c) the detected
structure with L=20, k=16 (see below for parameters setting).



In the remainder of this text, the ideas from Desolneux et al. [2] originally applied to isophote
orientation, are developed and applied to the distribution of gray values. We use identical notation
wherever possible and refer the reader for details to [2] for additional details.

In [2] the distribution of orientation of the isophotes in noise is uniformly distributed on
[0, 2π]. It is independent of the values of the pixels, provided the pixels are independent, random
variables. The detection of curvilinear structures can not use alignment of isophotes since the
local orientation is not constant. We therefore extend the ideas from [2] to the distribution of pixel
values in the image. Compared to the distribution of isophotes, the distribution of pixel values not
only does not obey the uniform law but is even often unknown. Also an isophote is either aligned
or misaligned with the segment. It is a boolean property. Analogously, a “pixel is brighter than” is
also boolean but requires some threshold. On the other hand, the statement that “a pixel is bright”
does not require a threshold and is not boolean any longer since it can be true to various degrees
of truth. Consequently, a curvilinear bright structure will be perceptually meaningful depending of
two properties, its brightness and its length. For the same perception stimulus a shorter structure
must be brighter than a longer one. Consequently, even a single, isolated pixel in noise can be
perceptually meaningful provided it is exceptionally bright. Compared to that, one isophote in
noise can never become meaningful.

Let f denote a realization, i.e. a gray-scale image, on a domain M ×N ⊂ Z2, of a random vari-
able following the law F , assumed unknown. The complementary cumulative distribution function

F (α) = P [f(x) > fα] = p (1)

gives the probability p that the value of pixel x exceeds the quantile α.

Let C be a curvilinear structure formed by a sequence of l connected2 points {x1, x2, . . . , xl}.
Let Xi be a random variable equal to 1 if f(xi) > fα and 0 otherwise. Let Sl=X1 +X2 + . . .+Xl,
with 0 ≤ Sl ≤ l, be a random variable counting in C the number of points brighter than fα.
Provided Xi are independent we have the probability that exactly k pixels in the curve C exceed
the intensity fα given by the binomial distribution

P [Sl = k] =

(
l

k

)
pk(1− p)l−k

2.1 Number of False alarms

A path is generated by a connectivity class given by a graph. The vertices of the graph represent the
image pixels, and the edges connect pixels that are connected. The graph is directed and acyclic.
A path in an image is therefore a path in the graph. The connectivity is assumed translation
invariant, except image borders.

Suppose every vertex is connected to n neighbors (with n=3 in the example Fig. 6). There
are therefore nl−1 l-pixel-long paths starting in any pixel in Z2. In a N×N image, the number of
possible starting points for a l-pixel-long path (generated by either of these graphs) is (N− l)2.
Hence, the number of l-pixel-long paths generated by either of the connectivity graphs in Fig. 6
can be approximated by

Π(l;N) = (N − l)2nl−1

Given the exponential rule we drop the multiplicative factor given by the number of possible
rotations of the graph.

Following the idea from [2] we are interested in detecting structures ”longer than” rather than
”exactly as long as” since the exact length is not known. We set up the detection threshold by
decreasing the number of false alarms to below an acceptable (arbitrary but small enough) value.

In statistical terms the presence of a meaningful structure is a test and the number of possible
paths along which it can occur is the number of trials. The probability of occurrence multiplied

2 we define connectivity below



by the number of tests gives the expectation of false alarms NFA

NFA[k, l] = Π(N)P [Sl ≥ k] =

l∑
i=k

Π(i,N)

(
l

i

)
pi(1−p)l−i (2)

The upper length limit l in the sum being unknown we let it equal to the length of the diagonal
of the image

√
2N . Comparing NFA to ε

NFA[k, l] ≤ ε (3)

is equivalent to saying whether the structure is ε meaningful.

2.2 Intensity threshold

The first thing one can do is to set k=l in eq. 2 and isolate p as a function of the length l

p ≤ l
√

ε

Π(l)el−1
(4)

Illustrated in Fig. 2a as a function of the length it shows that shorter structures, to be meaningful,
must contain points that are less probable, that is more deviating from the normality. If the law
of the intensity distribution in an image is known and invertible eq. 4 can be used to determine
the intensity threshold to detect meaningful structures. If the law is unknown or not invertible,
a rank-order filter ξ1−p in a sliding window with the rank 1−p will select points with intensity
above the quantile level 1−p, that is those with probability less or equal p.
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Fig. 2. a) the probability of point as function of the length, b) the threshold obtained as the quantile level
corresponding to p for law N(µ, σ2), for µ=0, σ=1.

Example: The intensity threshold corresponding to the probability p for a normal lawN(µ, σ2),
with µ=0, σ=1, is given by Fig. 2b. It says that even an isolated point becomes meaningful provided
its intensity exceeds 3.5σ. Long, connected structures are meaningful as long as their intensity re-
mains above 0.5σ of the noise.

Isolating k, with k ≤ l, from eq. 2 allows saying in how many pixels out of a sequence of l
connected pixels the intensity must exceed the p-th quantile value for the structure to become
meaningful. This means that we search for structures that are composed of bright, not necessarily
connected, sequences of points.

k(l) = min{k ∈ N,NFA[k, l] ≤ ε} (5)

Given some l, eq. 5 can be directly solved for k. In a typical image, e.g. 512×512 pixels, the number
of paths Πl is a large number, given that it increases exponentially with l, itself bounded by the
length of the diagonal of the image.



Consider a collection of L independent, random points. Let p denote the probability that the
intensity of a point exceeds some threshold. The probability that in k points out of L the intensity
exceeds some fixed threshold follows the binomial law, see illustration Fig. 3a for p = 0.1. If these
L points form a path in a Z2 grid there are many trials to this test. There are 3L−1 paths generated
by a three-connected graph (either of the graphs in Fig. 6) that start in every point of this grid.
This gives a huge number on unbounded (or large) supports, see Fig. 3b.
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Fig. 3. (a) Probability mass function of the binomial law, (b) Number of 3-connected paths on Z2 for
L ≤ 50.

The expectation of false alarms NFA is given Fig. 4a. We search for a configuration where
NFA in a given image remains low (condition eq. 3) that is the smallest k where the tail of the
distribution remains under ε. See Fig. 4b for k expressed as a function of L, for p=0.05.
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Fig. 4. (a) NFA as a function of k. In red: Choosing k for ε = 0.01. (b) Minimum k ensuring meaningfulness
as a function of the length L and parametrized by p.

Solving eq. 3 requires counting the number of paths Π(i,N) in eq. 2. Exact counting not being
easy on bounded supports, we provide a convenient approximation. Recall that a point in Z2 is
an origin for 3L−1 L-pixel-long paths. However, restricting this estimation to bounded supports
by multiplying this number by the number of points in a bounded support gives an unacceptably
strong overestimation. We propose another, more precise approximation.

A pair of points (a, b) in Z2 is connected by a path which is either i) a line segment running
straight from a to b or ii) a path oriented from a to b and containing as many right turns as left
turns. The count of such paths is given by

L∑
k=1

(
L

k

)(
L− k
k

)
This number multiplied by the number of possible points L segments distant each from the other.
This approximation provides a sufficiently precise estimation of paths on bounded supports.



Next, we fix some fixed fraction r=const., r ∈ R+, 0 < r ≤ 1, for having k ∈ N+ bright pixels
in a sequence k=‖rl0‖, with ‖.‖ meaning rounding to nearest integer. We solve eq. 2 for the lowest
p satisfying the condition on the meaningfulness eq. 3. Observe in Fig. 5 the values of p that we
obtain for various r. Notice that the curve for r=1 coincides with the one given by Fig. 2a (that
of a complete path). Observe that for longer curves and higher r lower threshold suffices to ensure
meaningfulness. These probabilities allow obtaining correct threshold values for the rank filter ξr,
as explained below.
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Fig. 5. The pixel probability p as a function of the sequence length L for various fixed fill fraction levels
r.

3 Efficient Implementation with morphological tools

We have seen that an obvious obstacle in the search of efficient implementation is the overwhelming
number of trials to test in an image. The test ”intensity in k out of l points in a path exceeds a
value” done alongside all paths is computationally very intensive; the number of paths in an image
increases linearly with the image size and exponentially with the length of the paths. Testing even
a much smaller number of trials in the case of straight lines in the algorithm in [2], takes seconds on
a recent computer [9]. In what follows we present a convenient fast approximation of the solution
using path openings.

Given some function f : D → V , the morphological opening of f by a structuring element
B ⊂ D defined by

γBf = sup{B(u) + v ≤ f ; (u, v) ∈ D × V } (6)

is a supremum of all translates of B that do not exceed f , where B(u)+v denotes B translated
horizontally by u and vertically by v. That is, for some x ∈ D, there is a translate B(u) such that
for any y ∈ B(u), f(y) ≥ γBf(x). Defining g = {x | γBf(x)>th}, then x ∈ g means that there is
some B(u), x ∈ B(u) that f(y) > th, for all y ∈ B(u). For a connected B with |B| = k, g indicates
where f > th larger than k. In 1-D these subdomains are intervals.

In presence of noise the strict inclusion of B is likely to fail. This motivated the introduction
of the rank-max opening, proposed by Ronse [10] and later described in Ronse and Heijmans [11],
defined as the supremum of openings by all subsets of cardinal k of a chosen structuring element
B

γB,k =
∨
i

{γBi | Bi ⊆ B, card(Bi) = k} (7)

where 1 ≤ k ≤ n with n=card(B). It acts as an opening tolerating n− k missing pixels.
Note that r, in r = k/l, is to be understood as the rate of pixels that are required to be

intensive, and inversely 1− r the rate of tolerated missing pixels.

A naive implementation of eq. 7 requires computing
(
n
k

)
openings which is prohibitive for most

applications. Instead of the naive implementation, Heijmans [12] shows that eq. 7 can be efficiently



implemented by using this identity

γB,k = 1l ∧ (δB̌ξB,n−k+1) (8)

where δB̌ is the conjugate dilation with B̌(x)=B(−x) and ξB,r a rank order filter

ξB,rf(x) = r-th largest value of {f(y), y ∈ B(x)}

Isolating in some original image f perceptually significant sequences of pixels longer than L
can be done by thresholding the rank-max opening γL,k > ξr. An approximate solution can be
obtained using parsimonious path openings Morard et al. [7] allowing to test only a fraction of all
trials. Once the paths are isolated, both the conjugate dilation and the rank filter implemented
by definition are reasonably fast on 1-D data. For time-critical applications one can use fast,
O(1) algorithms for both, e.g. [13] for dilation and [14] for the rank order filter. We apply the
morphological 1-D rank-max opening alongside the paths with statistically obtained parameters
to detect cracks as statistically meaningful structures in images. The following paragraph shortly
recalls the essentials.

Let f : D → V , with e.g. V = R+ be an image such that D is a rectangular subset of Z2.
Suppose D equipped with a translation-invariant, acyclic connectivity graph G : D →P(D), with
P denoting the powerset. We say a sequence π = (x1, x2, . . . , xn), n ∈ N, of points is a path if
xi+1 ∈ G(xi) for all 1 ≤ i ≤ n−1. The path length is n. Points x1 and xn are its starting and end
points. The starting points are on the edges of the image and each path goes to the facing image
edge so that the mean intensity is maximized alongside. The set of the paths generated by G in
this way is denoted by ΠG. The opening is applied alongside all paths in ΠG. The complement of
ΠG in spt(f) is set to 0.

(a) (b) (c) (d)

Fig. 6. An example of a commonly used connectivity graph (a), and its rotations (b-d)

4 Results

We illustrate the method on the detection of road cracks. Prior to the detection of cracks, the
original image - where cracks appear dark - is inverted so that an opening can be used to detect the
cracks. Notice that even though the background texture is non-stationary no other preprocessing
is needed as long as the rank order filter is applied in a sliding window.

This image has a resolution of 1 mm/pixel in both directions. We choose to detect cracks longer
than L = 100 mm. See Fig. 7 for the results.

Notice that discontinuous cracks are still detected but appear as composed of segments that
are not necessarily all longer than the parameter L. This occurs due to the non-increasingness of
the opening (ensured by ∧ in eq. 8).

Regarding the timing: the processing time of an 11294x4096 image is ∼8 s for the rank filter,
and ∼4 s the parsimonious rank-max path opening on a 2.70GHz Intel i7 CPU (without using the
CPU’s parallelism capabilities).



Fig. 7. Detection of road cracks. (top) original, 11294x4096 image, (bottom) the cracks obtained for
L ≥ 100, k = 65 and r = 0.15. The sliding window is a 100×100 rectangle.

5 Properties and discussion

The result of rank-max path opening is not necessarily composed of connected paths the length of
which is equal or greater than L as for path openings. Indeed, the tolerance to noise of rank-max
openings makes the result disconnected if the object in the input image is disconnected (as in
the simulation Fig. 1 and the road cracks Fig. 7). The rank-max opening may also create small
spurious branches due to local random noise arrangements. As a direct consequence, the results
obtained with a sequence of increasing lengths are not strictly decreasing (in the sense “being
included”) though global, non-strict decreasing is observed.

In presence of dense grouping of more cracks the threshold at some quantile is biased upwards
which counterbalances the sensitivity. Nonetheless, this comes somewhat in relation with the
perception law saying that isolated structures are perceived individually whereas groupings are
perceived as a whole first.

One, well known, limitation comes from the path openings. Their underlying acyclic graph puts
a limit on the tortuosity of the structures. The length of excessively tortuous structures becomes
underestimated. This drawback is however widely accepted since counter-balanced by the linear
computational complexity of this algorithm and rapidity even on large images.
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7. V. Morard, P. Dokládal, and E. Decencière, “Parsimonious path openings and closings,” IEEE Trans-
actions on Image Processing, vol. 23, no. 4, pp. 1543–1555, 2014.

8. F. Cokelaer, H. Talbot, and J. Chanussot, “Efficient Robust d-Dimensional Path Operators,” Selected
Topics in Signal Processing, IEEE journal of, vol. 6, no. 7, November 2012.

9. R. Grompone von Gioi, J. Jakubowicz, J.-M. Morel, and G. Randall, “LSD: a Line Segment Detector,”
Image Processing On Line, vol. 2, pp. 35–55, 2012.

10. C. Ronse, “Erosion of narrow image features by combination of local low rank and max filters,” in
Image Processing and its Applications, Proceedings 2nd IEE International Conference on, 1986, pp.
77–81.

11. C. Ronse and H. Heijmans, “The algebraic basis of mathematical morphology : II. openings and
closings,” Computer Vision, Graphics, and Image Processing, vol. 54, no. 1, pp. 74–97, 1991.

12. H. Heijmans, “Morphological image operators,” Advances in Electronics and Electron Physics Suppl.,
Boston: Academic Press, vol. 1, 1994.
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