E. Hachem, G. Jannoun, J. Veysset, M. Henri, R. Pierrot et al., Modeling of heat transfer and turbulent flows inside industrial furnaces, Simulation Modelling Practice and Theory, vol.30, pp.35-53, 2013.
DOI : 10.1016/j.simpat.2012.07.013

URL : https://hal.archives-ouvertes.fr/hal-00741954

E. Hachem, T. Kloczko, H. Digonnet, and T. Coupez, Stabilized finite element solution to handle complex heat and fluid flows in industrial furnaces using the immersed volume method, International Journal for Numerical Methods in Fluids, vol.2, issue.3, pp.99-121, 2012.
DOI : 10.1002/fld.2498

URL : https://hal.archives-ouvertes.fr/hal-00549730

S. Brogniez, C. Farhat, and E. Hachem, A high-order discontinuous Galerkin method with Lagrange multipliers for advection???diffusion problems, Computer Methods in Applied Mechanics and Engineering, vol.264, issue.264, pp.49-66, 2013.
DOI : 10.1016/j.cma.2013.05.003

URL : https://hal.archives-ouvertes.fr/hal-00836565

E. Hachem, S. Feghali, T. Coupez, and R. Codina, A three-field stabilized finite element method for fluid-structure interaction: elastic solid and rigid body limit, International Journal for Numerical Methods in Engineering, vol.228, issue.6, pp.566-584, 2015.
DOI : 10.1002/nme.4972

URL : https://hal.archives-ouvertes.fr/hal-01182896

Y. Mesri, H. Guillard, and T. Coupez, Automatic coarsening of three dimensional anisotropic unstructured meshes for multigrid applications, Applied Mathematics and Computation, vol.218, issue.21, pp.10500-10519, 2012.
DOI : 10.1016/j.amc.2012.04.014

URL : https://hal.archives-ouvertes.fr/hal-00713134

E. Hachem, G. Jannoun, J. Veysset, and T. Coupez, On the stabilized finite element method for steady convection-dominated problems with anisotropic mesh adaptation, Applied Mathematics and Computation, vol.232, pp.581-594, 2014.
DOI : 10.1016/j.amc.2013.12.166

URL : https://hal.archives-ouvertes.fr/hal-00960089

Y. Mesri, Gestion et contrôle des maillages anisotropes non structurés : Applications a l'aérodynamique. Thése de doctorat de l, 2007.

Y. Mesri, M. Khalloufi, and E. Hachem, On optimal simplicial 3D meshes for minimizing the Hessian-based errors, Applied Numerical Mathematics, vol.109, pp.235-249, 2016.
DOI : 10.1016/j.apnum.2016.07.007

URL : https://hal.archives-ouvertes.fr/hal-01354332

G. Jannoun, E. Hachem, J. Veysset, and T. Coupez, Anisotropic meshing with time-stepping control for unsteady convection-dominated problems, Applied Mathematical Modelling, vol.39, issue.7, pp.1899-1916, 2015.
DOI : 10.1016/j.apm.2014.10.005

URL : https://hal.archives-ouvertes.fr/hal-01089149

Y. Mesri, H. Digonnet, and T. Coupez, Hierarchical adaptive multi-mesh partitioning algorithm on heterogeneous systems, Computational science and Engineering. V, vol.74, pp.299-306, 2011.
DOI : 10.1007/978-3-642-14438-7_32

URL : https://hal.archives-ouvertes.fr/hal-01466941

Y. Mesri, J. Gratien, O. Ricois, and R. Gayno, Parallel Adaptive Mesh Refinement for Capturing Front Displacements: Application to Thermal EOR Processes., SPE Reservoir Characterization and Simulation Conference and Exhibition, 2013.
DOI : 10.2118/166058-MS

URL : https://hal.archives-ouvertes.fr/hal-01466939

A. Ern and J. L. Guermond, Elements finis : théorie, applications, mise en oeuvre, Mathématiques & Applications 36

P. Breitkopf, G. Touzot, and P. Villon, Consistency approach and diffusive derivation in element free methods based on moving least-squares approximation, Computer Assisted Mechanics and Engineering Sciences, vol.5, pp.479-501, 1998.

P. Breitkopf, H. Naceur, A. Rassineux, and P. Villon, Moving least squares response surface approximation: Formulation and metal forming applications, Computers & Structures, vol.83, issue.17-18, pp.1411-1428, 2005.
DOI : 10.1016/j.compstruc.2004.07.011

O. C. Zienkiewicz and J. Z. Zhu, The superconvergent patch recovery (SPR) and adaptive finite element refinement, Computer Methods in Applied Mechanics and Engineering, vol.101, issue.1-3, pp.207-224, 1992.
DOI : 10.1016/0045-7825(92)90023-D

O. C. Zienkiewicz and J. Z. Zhu, Superconvergence and the superconvergent patch recovery, Finite Elements in Analysis and Design, vol.19, issue.1-2, pp.11-23, 1995.
DOI : 10.1016/0168-874X(94)00054-J

Z. Zhang and J. Z. Zhu, Analysis of the superconvergent patch recovery technique and a posteriori error estimator in the finite element method (I), Computer Methods in Applied Mechanics and Engineering, vol.123, issue.1-4, pp.173-187, 1995.
DOI : 10.1016/0045-7825(95)00780-5

B. Boroomand and O. C. Zienkiewicz, RECOVERY BY EQUILIBRIUM IN PATCHES (REP), International Journal for Numerical Methods in Engineering, vol.98, issue.1, pp.137-164, 1997.
DOI : 10.1002/(SICI)1097-0207(19970115)40:1<137::AID-NME57>3.0.CO;2-5

H. Gu, Z. Zong, and K. C. Hung, A modified superconvergent patch recovery method and its application to large deformation problems, Finite Elements in Analysis and Design, vol.40, issue.5-6, pp.665-687, 2004.
DOI : 10.1016/S0168-874X(03)00109-4

A. R. Khoei and S. A. Gharehbaghi, The superconvergence patch recovery technique and data transfer operators in 3D plasticity problems, Finite Elements in Analysis and Design, vol.43, issue.8, pp.630-648, 2007.
DOI : 10.1016/j.finel.2007.01.002

S. Kumar and L. Fourment, Remapping method for transferring data between two meshes using a modified iterative SPR approach for parallel resolution. Key Engineering materials Vols, pp.504-506, 2012.
DOI : 10.4028/www.scientific.net/kem.504-506.455

URL : https://hal.archives-ouvertes.fr/hal-00676342

F. Alauzet and M. Mehrenberger, P1-conservative solution interpolation on unstructured triangular meshes, International Journal for Numerical Methods in Engineering, vol.27, issue.2, pp.1552-1588, 2010.
DOI : 10.1002/nme.2951

URL : https://hal.archives-ouvertes.fr/inria-00354509

F. Alauzet, A parallel matrix-free conservative solution interpolation on unstructured tetrahedral meshes, Computer Methods in Applied Mechanics and Engineering, vol.299, 2015.
DOI : 10.1016/j.cma.2015.10.012

URL : https://hal.archives-ouvertes.fr/hal-01211749

J. Grandy, Conservative Remapping and Region Overlays by Intersecting Arbitrary Polyhedra, Journal of Computational Physics, vol.148, issue.2, pp.433-466, 1999.
DOI : 10.1006/jcph.1998.6125

R. H. Bailey, An algorithm for the conservative interpolation of data between two-dimensional structured or unstructured triangular meshes, 1987.

J. R. Cebral and R. Lohner, Conservative Load Projection and Tracking for Fluid-Structure Problems, AIAA Journal, vol.35, issue.4, pp.687-692, 1997.
DOI : 10.2514/2.158

X. Jiao and M. T. Heath, Common-refinement-based data transfer between non-matching meshes in multiphysics simulations, International Journal for Numerical Methods in Engineering, vol.16, issue.14, pp.61-2402, 2004.
DOI : 10.1002/nme.1147

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

R. K. Jaiman, X. Jiao, P. H. Geubelle, and E. Loth, Assessment of conservative load transfer for fluid-solid interface with non-matching meshes, International Journal for Numerical Methods in Engineering, vol.185, issue.15, pp.2014-2038, 2005.
DOI : 10.1002/nme.1434

X. Jiao and M. T. Heath, OVERLAYING SURFACE MESHES, PART I: ALGORITHMS, International Journal of Computational Geometry & Applications, vol.1, issue.06, pp.379-402, 2004.
DOI : 10.1145/282918.282923

P. E. Farrell, M. D. Pigott, C. C. Pain, G. J. Gorman, and C. R. Wilson, Conservative interpolation between unstructured meshes via supermesh construction, Computer Methods in Applied Mechanics and Engineering, vol.198, issue.33-36, pp.2632-2642, 2009.
DOI : 10.1016/j.cma.2009.03.004

P. E. Farrell and J. R. Maddison, Conservative interpolation between volume meshes by local Galerkin projection, Computer Methods in Applied Mechanics and Engineering, vol.200, issue.1-4, pp.89-100, 2011.
DOI : 10.1016/j.cma.2010.07.015

A. Adam, D. Pavlidis, J. R. Percival, P. Salinas, Z. Xie et al., Higher-order conservative interpolation between control-volume meshes: Application to advection and multiphase flow problems with dynamic mesh adaptivity, Journal of Computational Physics, vol.321, pp.512-531, 2016.
DOI : 10.1016/j.jcp.2016.05.058

URL : http://doi.org/10.1016/j.jcp.2016.05.058

J. Donea, A. Huerta, J. Ph, A. Ponthot, and . Rodriguez-ferran, Arbitrary Lagrangian-Eulerian Methods. Encyclopedia of Computational Mechanics, 2004.
DOI : 10.1002/0470091355.ecm009

URL : http://hdl.handle.net/2117/8449

J. K. Dukowicz, Conservative rezoning (remapping) for general quadrilateral meshes, Journal of Computational Physics, vol.54, issue.3, pp.411-424, 1984.
DOI : 10.1016/0021-9991(84)90125-6

J. D. Ramshaw, Conservative rezoning algorithm for generalized two-dimensional meshes, Journal of Computational Physics, vol.59, issue.2, pp.193-199, 1985.
DOI : 10.1016/0021-9991(85)90141-X

J. K. Dukowicz and J. W. Kodis, Accurate Conservative Remapping (Rezoning) for Arbitrary Lagrangian-Eulerian Computations, SIAM Journal on Scientific and Statistical Computing, vol.8, issue.3, pp.305-321, 1987.
DOI : 10.1137/0908037

L. G. Margolin and M. Shashkov, Second-order sign-preserving conservative interpolation (remapping) on general grids, Journal of Computational Physics, vol.184, issue.1, pp.266-298, 2003.
DOI : 10.1016/S0021-9991(02)00033-5

R. Garimella, M. Kucharik, and M. Shashkov, An efficient linearity and bound preserving conservative interpolation (remapping) on polyhedral meshes, Computers & Fluids, vol.36, issue.2, pp.224-237, 2007.
DOI : 10.1016/j.compfluid.2006.01.014

M. Kucharik and M. Shashkov, Extension of efficient, swept-integration-based conservative remapping method for meshes with changing connectivity, International Journal for Numerical Methods in Fluids, vol.184, issue.8, pp.56-1359, 2007.
DOI : 10.1002/fld.1577

Z. Lin, S. Jiang, S. Wu, and L. Kuang, A local rezoning and remapping method for unstructured mesh, Computer Physics Communications, vol.182, issue.6, pp.1361-1376, 2011.
DOI : 10.1016/j.cpc.2010.11.034

S. Chipada, C. N. Dawson, M. L. Martinez, and M. F. Wheeler, A projection method for constructing a mass conservative velocity field, Computer Methods in Applied Mechanics and Engineering, vol.157, issue.1-2, pp.1-10, 1997.
DOI : 10.1016/S0045-7825(98)80001-7

D. Brancherie, P. Villon, A. Ibrahimbegovic, A. Rassineux, and P. Breitkopf, Field transfer in nonlinear structural mechanics based on diffuse approximation, International Conference on Computational Plasticity COMPLAS VIII, 2005.

G. Cheshire and W. D. Henshaw, A Scheme for Conservative Interpolation on Overlapping Grids, SIAM Journal on Scientific Computing, vol.15, issue.4, pp.819-845, 1994.
DOI : 10.1137/0915051

A. Pont, R. Codina, and J. Baiges, Interpolation with restrictions between finite element meshes for flow problems in an ALE setting, International Journal for Numerical Methods in Engineering, vol.45, issue.2, 2016.
DOI : 10.1002/nme.5444

A. Dervieux, Y. Mesri, F. Alauzet, A. Loseille, L. Hascoet et al., Continuous Mesh Adaptation Models for CFD, Computational Fluid Dynamics Journal, vol.16, issue.4, pp.346-355, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01466954

R. Lohner, Robust, Vectorized Search Algorithms for Interpolation on Unstructured Grids, Journal of Computational Physics, vol.118, issue.2, pp.380-387, 1994.
DOI : 10.1006/jcph.1995.1107

A. Guttman, R-Trees: A dynamic index structure for spatial searching, ACM SIGMOD Record, vol.14, issue.2, p.4757, 1984.