Two-sided boundary stabilization of two linear hyperbolic PDEs in minimum time

Abstract : We solve the problem of stabilizing two coupled linear hyperbolic PDEs using actuation at both boundary of the spatial domain in minimum time. We design a novel Fredholm transformation similarly to backstepping approaches. This yields an explicit full-state feedback law that achieves the theoretical lower bound for convergence time to zero.
Type de document :
Communication dans un congrès
2016 IEEE 55th Conference on Decision and Control (CDC 2016), Dec 2016, Las Vegas, United States. pp.3118 - 3124, Proceedings of the 2016 IEEE 55th Conference on Decision and Control (CDC 2016)
Liste complète des métadonnées

https://hal-mines-paristech.archives-ouvertes.fr/hal-01499918
Contributeur : François Chaplais <>
Soumis le : samedi 1 avril 2017 - 15:52:16
Dernière modification le : mardi 27 mars 2018 - 16:06:18

Identifiants

  • HAL Id : hal-01499918, version 1

Collections

Citation

Jean Auriol, Florent Di Meglio. Two-sided boundary stabilization of two linear hyperbolic PDEs in minimum time. 2016 IEEE 55th Conference on Decision and Control (CDC 2016), Dec 2016, Las Vegas, United States. pp.3118 - 3124, Proceedings of the 2016 IEEE 55th Conference on Decision and Control (CDC 2016). 〈hal-01499918〉

Partager

Métriques

Consultations de la notice

67