A. Maradudin, J. Sambles, and W. Barnes, Modern plasmonics, pp.1-36, 2014.

K. Yao and Y. Liu, Plasmonic metamaterials, Nanotechnology Reviews, vol.3, issue.2, pp.177-210, 2014.
DOI : 10.1515/ntrev-2012-0071

H. Atwater and A. Polman, Plasmonics for improved photovoltaic devices, Nature Materials, vol.14, issue.3, pp.205-213, 2010.
DOI : 10.1557/PROC-1002-N03-05

A. Polman, APPLIED PHYSICS: Plasmonics Applied, Science, vol.322, issue.5903, pp.868-869, 2008.
DOI : 10.1126/science.1163959

S. Lal, S. Clare, and N. Halas, Nanoshell-Enabled Photothermal Cancer Therapy: Impending Clinical Impact, Accounts of Chemical Research, vol.41, issue.12, pp.1842-1851, 2008.
DOI : 10.1021/ar800150g

B. Stipe, Magnetic recording at 1.5??Pb??m???2 using an integrated plasmonic antenna, Nature Photonics, vol.94, issue.7, pp.484-488, 2010.
DOI : 10.1038/nphoton.2010.90

M. Stockman, Spasers explained, Nature Photonics, vol.86, issue.6, pp.327-329, 2008.
DOI : 10.1038/nphoton.2008.85

M. Stockman, Nanoplasmonics: The physics behind the applications, Physics Today, vol.49, issue.2, pp.39-44, 2011.
DOI : 10.1016/j.neuroimage.2009.07.035

S. Maier, Plasmonics: fundamentals and applications, pp.65-88, 2007.
DOI : 10.1007/0-387-37825-1

P. West, Searching for better plasmonic materials, Laser & Photonics Reviews, vol.50, issue.6, pp.795-808, 2010.
DOI : 10.1080/09500340308235215

URL : http://onlinelibrary.wiley.com/doi/10.1002/lpor.200900055/pdf

G. Naik, V. Shalaev, and A. Boltasseva, Alternative Plasmonic Materials: Beyond Gold and Silver, Advanced Materials, vol.54, issue.172, pp.3264-3294, 2013.
DOI : 10.1063/1.332415

URL : http://orbit.dtu.dk/en/publications/alternative-plasmonic-materials-beyond-gold-and-silver(a9cf6d75-c9fe-4600-8852-11f612a11d5f).html

A. Boltasseva and H. Atwater, Low-Loss Plasmonic Metamaterials, Science, vol.9, issue.3, pp.290-291, 2011.
DOI : 10.1038/nmat2629

E. Palik, Handbook of optical constants of solids, pp.350-356, 1991.

R. Serway, Principles of physics, p.602, 1998.

S. Akamatsu and M. Plapp, Eutectic and peritectic solidification patterns, Current Opinion in Solid State and Materials Science, vol.20, issue.1, pp.46-54, 2016.
DOI : 10.1016/j.cossms.2015.10.002

URL : https://hal.archives-ouvertes.fr/hal-01469083

L. Rátkai, A. Szállás, T. Pusztai, T. Mohri, and L. Gránásy, Ternary eutectic dendrites: Pattern formation and scaling properties, The Journal of Chemical Physics, vol.236, issue.1, pp.154501-154513, 2015.
DOI : 10.1103/PhysRevLett.109.086101

D. Pawlak, K. Kolodziejak, S. Turczynski, J. Kisielewski, K. Ro_-zniatowski et al., :Pr Eutectic, Chemistry of Materials, vol.18, issue.9, pp.2450-2457, 2006.
DOI : 10.1021/cm060136h

D. Pawlak, S. Turczynski, M. Gajc, K. Kolodziejak, R. Diduszko et al., How Far Are We from Making Metamaterials by Self-Organization? The Microstructure of Highly Anisotropic Particles with an SRR-Like Geometry, Advanced Functional Materials, vol.28, issue.238, pp.1116-1124, 2010.
DOI : 10.1080/09500340308235215

M. Massaouti, A. Basharin, M. Kafesaki, M. Acosta, R. Merino et al., Eutectic epsilon-near-zero metamaterial terahertz waveguides, Optics Letters, vol.38, issue.7, pp.1140-1142, 2013.
DOI : 10.1364/OL.38.001140

V. Myroshnychenko, A. Stefanski, A. Manjavacas, M. Kafesaki, R. Merino et al., Interacting plasmon and phonon polaritons in aligned nano- and microwires, Optics Express, vol.20, issue.10, pp.10879-10887, 2012.
DOI : 10.1364/OE.20.010879

K. Sadecka, M. Gajc, K. Orlinski, H. Surma, I. Józjóz´wik-bia?a et al., When Eutectics Meet Plasmonics: Nanoplasmonic, Volumetric, Self-Organized, Silver-Based Eutectic, Advanced Optical Materials, vol.11, issue.3, pp.381-389, 2015.
DOI : 10.1021/cg2005369

K. Sadecka, J. Toudert, H. Surma, and D. Pawlak, Temperature and atmosphere tunability of the nanoplasmonic resonance of a volumetric eutectic-based Bi_2O_3-Ag metamaterial, Optics Express, vol.23, issue.15, pp.19098-19111, 2015.
DOI : 10.1364/OE.23.019098

D. Pawlak, G. Lerondel, I. Dmytruk, Y. Kagamitani, S. Durbin et al., Second order self-organized pattern of terbium???scandium???aluminum garnet and terbium???scandium perovskite eutectic, Journal of Applied Physics, vol.142, issue.12, pp.9731-9736, 2002.
DOI : 10.1016/0022-0248(94)90342-5

J. Kim, L. Aagesen, J. Choi, J. Choi, H. Kim et al., Template-Directed Directionally Solidified Three-Dimensionally Mesostructured AgCl-KCl Eutectic Photonic Crystals, Advanced Materials, vol.28, issue.43, pp.4551-4559, 2015.
DOI : 10.1002/adma.201604022

J. Llorca and V. Orera, Directionally solidified eutectic ceramic oxides, Progress in Materials Science, vol.51, issue.6, pp.711-809, 2006.
DOI : 10.1016/j.pmatsci.2005.10.002

P. Oliete, M. Mesa, R. Merino, and V. Orera, Directionally solidified Al 2 O 3 ???Yb 3 Al 5 O 12 eutectics for selective emitters, Solar Energy Materials and Solar Cells, vol.144, pp.405-410, 2016.
DOI : 10.1016/j.solmat.2015.09.053

K. Wysmulek, J. Sar, P. Osewski, K. Orlinski, K. Kolodziejak et al., review) A SrTiO 3 ?TiO 2 eutectic composite as a stable photoanode material for photoelectrochemical hydrogen production

K. Kolodziejak, J. Sar, K. Wysmulek, P. Osewski, K. Orlinski et al., ) When eutectic composites meet photoelectrochemistry?highly stable and efficient UV?visible hybrid photoanodes

Y. Waku, N. Nakagawa, T. Wakamoto, H. Ohtsubo, K. Shimizu et al., High-temperature strength and thermal stability of a unidirectionally solidified Al2O 3 /YAG eutectic composite, J Mater Sci J Mater Sci, vol.52, issue.5, pp.5503-55101217, 1998.

N. Yasui, Y. Ohashi, T. Kobayashi, and T. Den, Development of Phase-Separated Scintillators with Light-Guiding Properties, Advanced Materials, vol.5, issue.40, pp.5464-5469, 2012.
DOI : 10.1063/1.555536

K. Hishinuma, K. Kamada, S. Kurosawa, A. Yamaji, J. Pejchal et al., LiF/CaF 2 /LiBaF 3 ternary fluoride eutectic scintillator, Jpn J Appl Phys, vol.54, issue.4S, pp.4-04, 2015.

F. Simon, S. Clevers, G. Gbabode, N. Couvrat, V. Agasse-peulon et al., Enhanced Second Harmonic Generation from an Organic Self-Assembled Eutectic Binary Mixture: A Case Study with 3-Nitrobenzoic and 3,5-Dinitrobenzoic Acids, Crystal Growth & Design, vol.15, issue.2, pp.946-960, 2015.
DOI : 10.1021/cg5017565

URL : https://hal.archives-ouvertes.fr/hal-01928787

T. Fukuda, P. Rudolph, and S. Uda, Fiber crystal growth from melt, pp.1-46, 2004.
DOI : 10.1007/978-3-662-07214-1

T. Fukuda and V. Chani, Shaped crystals growth by micro-pulling-down technique, pp.3-36, 2007.

J. Assal, Experimental Phase Diagram Study and Thermodynamic Optimization of the Ag-Bi-O System, Journal of the American Ceramic Society, vol.9, issue.2, pp.711-715, 1999.
DOI : 10.1016/0364-5916(85)90021-5

N. Kumada, Neutron powder diffraction refinement of ilmenite-type bismuth oxides: ABiO3 (A = Na, Ag), Materials Research Bulletin, vol.35, issue.14-15, pp.2397-2402, 2000.
DOI : 10.1016/S0025-5408(00)00453-0

A. Wells, Structural Inorganic Chemistry., The Journal of Physical Chemistry, vol.50, issue.5, p.479, 1975.
DOI : 10.1021/j150449a009

. Passaniti, United States Patent, Patent Number: 5,389,469. Date of Patent, p.14, 1995.

R. Sharma, Characterization of AgBiO 3 with the cubic KSbO 3 structure, Indian J Chem Sect, vol.43, issue.1, pp.11-17, 2004.