Rail and turnout detection using gradient information and template matching

Abstract : —This paper presents a railway track and turnout detection algorithm which is not based on an empirical threshold. The railway track extraction is based on an edge detection using the width of the rolling pads. This edge detection scheme is then used as an input to the RANSAC algorithm to determine the model of the rails. The turnout detection scheme is based on the Histogram of Oriented Gradient (HOG) and Template Matching (TM). The results show (i) reliable performance for our railway track extraction scheme and (ii) a correction rate of 97.31 percent for the turnout detection scheme using a Support Vector Machine (SVM) classifier.
Type de document :
Communication dans un congrès
IEEE. Intelligent Rail Transportation (ICIRT), 2013 IEEE International Conference on, Aug 2013, Beijing, China. IEEE, pp.233 - 238, 2013, 〈http://ieeexplore.ieee.org/document/6696299/〉. 〈10.1109/ICIRT.2013.6696299〉
Liste complète des métadonnées

https://hal-mines-paristech.archives-ouvertes.fr/hal-01517885
Contributeur : Bogdan Stanciulescu <>
Soumis le : mercredi 3 mai 2017 - 18:06:41
Dernière modification le : mardi 27 mars 2018 - 16:06:18

Identifiants

Collections

Citation

Jorge Espino, Bogdan Stanciulescu, Philippe Forin. Rail and turnout detection using gradient information and template matching. IEEE. Intelligent Rail Transportation (ICIRT), 2013 IEEE International Conference on, Aug 2013, Beijing, China. IEEE, pp.233 - 238, 2013, 〈http://ieeexplore.ieee.org/document/6696299/〉. 〈10.1109/ICIRT.2013.6696299〉. 〈hal-01517885〉

Partager

Métriques

Consultations de la notice

112