Skip to Main content Skip to Navigation
Journal articles

In situ observation of strained bands and ductile damage in thin AA2139-T3 alloy sheets

Abstract : The interactions between plasticity and damage mechanisms are not clearly established concerning the fracture of ductile sheet materials (e.g., flat to slant transition). The question addressed herein is to elucidate which mechanism is responsible for localized phenomena leading to the final failure. A mechanical test carried out on a notched plate made of 2139-T3 aluminum alloy is imaged thanks to synchrotron laminography at micrometer resolution. Ductile damage (i.e., void nucleation, growth and coalescence) is analyzed via reconstructed volumes. Although the low volume fraction of secondary phases in the tested alloy is challenging, digital volume correlation is also utilized to measure displacement fields and estimate strain fields in the bulk of the alloy during the whole test. In the first part of this study, the resolution of the measurement technique is assessed under such conditions. Then strained bands are shown to occur very early on in what will be the slant region of the fracture path. Conversely, damage grows at very late loading steps.
Complete list of metadata

Cited literature [36 references]  Display  Hide  Download
Contributor : Bibliothèque UMR7633 Connect in order to contact the contributor
Submitted on : Friday, May 5, 2017 - 3:46:43 PM
Last modification on : Thursday, June 9, 2022 - 8:20:07 AM
Long-term archiving on: : Sunday, August 6, 2017 - 4:03:11 PM


Buljac-Taillandier-Morgeneyer ...
Publisher files allowed on an open archive



Ante F Buljac, Thibault F Taillandier-Thomas, Thilo F Morgeneyer, Lukas F Helfen, Stéphane Roux, et al.. In situ observation of strained bands and ductile damage in thin AA2139-T3 alloy sheets. Procedia IUTAM, Elsevier, 2017, 20, pp.66-72. ⟨10.1016/j.piutam.2017.03.009⟩. ⟨hal-01518925⟩



Record views


Files downloads