H. Hallberg, Approaches to Modeling of Recrystallization, Metals, vol.1, pp.16-48, 2011.

A. D. Rollett, Overview of modeling and simulation of recrystallization, Progress in Materials Science, vol.42, issue.1-4, pp.79-99, 1997.

A. D. Rollett and D. Raabe, A hybrid model for mesoscopic simulation of recrystallization, Computational Materials Science, vol.21, issue.1, pp.69-78, 2001.

D. Raabe, Introduction of a scalable three-dimensional cellular automaton with a probabilistic switching rule for the discrete mesoscale simulation of recrystallization phenomena, Philosophical Magazine A, vol.79, issue.10, pp.2339-2358, 1999.

L. A. Mora, G. Gottstein, and L. S. Shvindlerman, Three-dimensional grain growth : Analytical approaches and computer simulations, Acta Materialia, vol.56, issue.20, pp.5915-5926, 2008.

C. E. Krill and L. Q. Chen, Computer simulation of 3-D grain growth using a phase-field model. Acta Materialia, vol.50, pp.3059-3075, 2002.

M. Elsey, S. Esedoglu, and P. Smereka, Diffusion generated motion for grain growth in two and three dimensions, Journal of Computational Physics, vol.228, issue.21, pp.8015-8033, 2009.

M. Bernacki, Y. Chastel, T. Coupez, and R. E. Logé, Level set framework for the numerical modelling of primary recrystallization in polycrystalline materials, Scripta Materialia, vol.58, issue.12, pp.1129-1132, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00509731

M. Bernacki, R. E. Logé, and T. Coupez, Level set framework for the finite-element modelling of recrystallization and grain growth in polycrystalline materials, Scripta Materialia, vol.64, issue.6, pp.525-528, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00577039

B. Scholtes, M. Shakoor, A. Settefrati, P. Bouchard, N. Bozzolo et al., New finite element developments for the full field modeling of microstructural evolutions using the level-set method, Computational Materials Science, vol.109, pp.388-398, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01479197

A. Agnoli, N. Bozzolo, R. Logé, J. Franchet, J. Laigo et al., Development of a level set methodology to simulate grain growth in the presence of real secondary phase particles and stored energyApplication to a nickel-base superalloy, Computational Materials Science, vol.89, pp.233-241, 2014.

B. Scholtes, R. Boulais-sinou, A. Settefrati, D. Pino-muñoz, I. Poitrault et al., 3D level set modeling of static recrystallization considering stored energy fields, Computational Materials Science, vol.122, pp.57-71, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01327901

M. Shakoor, B. Scholtes, P. Bouchard, and M. Bernacki, An efficient and parallel level set reinitialization method-Application to micromechanics and microstructural evolutions, Applied Mathematical Modelling, vol.39, pp.7291-7302, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01139858

Y. Mellbin, H. Hallberg, and M. Ristinmaa, A combined crystal plasticity and graph-based vertex model of dynamic recrystallization at large deformations. Modelling and Simulation in, Materials Science and Engineering, vol.23, issue.4, p.45011, 2015.

E. Popova, Y. Staraselski, A. Brahme, R. K. Mishra, and K. Inal, Coupled crystal plasticity-Probabilistic cellular automata approach to model dynamic recrystallization in magnesium alloys, International Journal of Plasticity, vol.66, pp.85-102, 2015.

L. Chen, J. Chen, R. A. Lebensohn, Y. Z. Ji, T. W. Heo et al., An integrated fast Fourier transform-based phase-field and crystal plasticity approach to model recrystallization of three dimensional polycrystals, Computer Methods in Applied Mechanics and Engineering, vol.285, pp.829-848, 2015.

U. F. Kocks, Laws for Work-Hardening and Low-Temperature Creep, Journal of Engineering Materials and Technology, vol.98, issue.1, p.76, 1976.

H. Mecking and U. F. Kocks, Kinetics of flow and strain-hardening, Acta Metallurgica, vol.29, issue.11, pp.1865-1875, 1981.

F. J. Humphreys and M. Hatherly, Recrystallization and related annealing phenomena, 2004.

O. Beltran, K. Huang, and R. E. Logé, A mean field model of dynamic and post-dynamic recrystallization predicting kinetics, grain size and flow stress, Computational Materials Science, vol.102, pp.293-303, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01137230

P. Peczak and M. J. Luton, The effect of nucleation models on dynamic recrystallization I. Homogeneous stored energy distribution, Philosophical Magazine Part B, vol.68, issue.1, pp.115-144, 1993.