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Abstract: Magnetic and dynamic cross-fields have been widely used in plasma torches for 

multiple purposes: reduction of electrode erosion, increase of the operating power and 

possibility of control and stabilization of the plasma arc. This paper presents a new 

analytical approach to model the behaviour of the arc under cross-fields. It is very useful 

because it provides basic information on the arc without having to resort to costly 

simulations. An MHD numerical model is used for validation.   
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1. Introduction 

Multiple investigations have been carried out over the 

past decades in order to understand the behaviour of the 

plasma arc under the effect of transverse cross-fields, but 

the theoretical grounds remain very weakly established, in 

particular for the AC arc. The study conducted in this 

paper is part of a wide research that PERSEE is leading in 

the field of plasma physics and applications [1]. The 

analytical approach adopted in this paper has great 

advantage over MHD simulation because it can provide 

basic information about the arc motion and its 

characteristics by using simple analytical expressions and 

equations, without having to resort to costly MHD 

computations [2].  

It is well known that arcs can be stabilized by curvature 

when exposed to cross-fields. Many theoretical studies 

have investigated the DC curved arc under transverse 

fields using the technique of identification of the energy 

equation (Elenbaas-Heller equation) in the Frenet-Serret 

referential [3-5]. In this paper, we will extend this 

technique to solve for the motion of the curved AC arc. 

All the characteristics and properties of the AC arc are 

obtained from expressions found in [6]. The analytical 

model is validated using an MHD model. This approach is 

of extreme importance in order to establish stability and 

possibly control of the voltage of the arc.  

2. General assumption 

The study has been conducted for a tip-to-tip electrode 

torch as shown in figure 1. It’s common fact that the 

model includes several coupled electromagnetic and 

dynamic equations with insurmountable complexity due 

to the non-linearity that can be found therein. Therefore, 

in order to solve the model analytically, some stringent 

assumptions must be established first: 

 

 Negligible radiation [7].  

 Negligible near-electrode phenomenons; they have 

little influence on the behaviour of the arc column. 

 Constant plasma thermal diffusivity, viscosity and arc 

radius [2,6] 

 

3. Governing equations  

We will be thoroughly looking into three main 

equations that govern the motion of the arc under 

transverse cross-fields: the equation of conservation of 

momentum, the energy balance and the Maxwell-Faraday 

equation. They are respectively expressed here below. 

Then we will solve them in the Frenet-Serret coordinate 

system figure 2.  
𝜕𝜌�⃗⃗� 

𝜕𝑡
+ ∇. (𝜌�⃗� ⊗ �⃗� 𝑇 + �̅̅�) = ∇. 𝜏̅�̅�𝑎𝑥𝑤𝑒𝑙𝑙   (1) 

1

𝜆
(
𝜕𝑆

𝜕𝑡 
+ �⃗⃗⃗� . ∇⃗⃗ 𝑆) = Δ𝑆 + 𝜎𝐸2  (2) 

∇⃗⃗ × �⃗� = −
𝜕�⃗� 

𝜕𝑡
   (3) 

�̅̅� and 𝜏̅�̅�𝑎𝑥𝑤𝑒𝑙𝑙  are the pressure and Maxwell tensors. 𝜌 

and 𝜆 are respectively the density and  the thermal 

diffusivity. �⃗�  is the electric field. It’s important to notice 

that the second equation, known as the Elenbaas-Heller 

equation, describes the energy balance. S is the heat 

potential and is given by the following relation [2-4,6,8]:  

𝑆 = ∫ 𝑘(𝑇′)𝑑𝑇′
𝑇

𝑇0
   (4) 

Here 𝑇0 is a reference temperature and is taken to be the 

temperature above which conduction occurs. 𝑘 is the 

thermal conductivity. 

�⃗⃗⃗�  in equation (2) corresponds to the relative velocity of 

the surrounding gas flow with respect to the arc velocity 

and it is expressed by:  

�⃗⃗⃗� = �⃗� 𝑔 − �⃗� 𝑎   (5) 

Moreover, we already have an expression of S for the 

AC arc that is found in [6]: 



𝑆(𝑟, 𝑡) =
𝐼0𝐽0(𝑞1

𝑟

𝑎
)

2√2𝐵𝜋𝑎𝐽1(𝑞1)
√1 − 𝑠𝑖𝑛𝛿sin (2𝜔𝑡 + 𝛿) 

  (6) 

Here, 𝛿 = arccot(𝜔Θ) and Θ =
𝑎2

𝜆 𝑞1
2 are characteristics 

of the arc. 𝑎 is the arc radius and 𝑞1is the first zero of the 

Bessel function 𝐽0. 𝐼0 is the maximum current. A similar 

expression is found in [8] for the DC arc:  

𝑆(𝑟) =
𝐼0𝐽0(𝑞1

𝑟

𝑎
)

2√𝐵𝜋𝑎𝐽1(𝑞1)
  (7) 

It’s noteworthy to realize that in both cases, the electric 

conductivity 𝜎 is assumed to have a linear dependence on 

the flux potential S given by 𝜎 = 𝐵𝑆 [2,6,8]. Expressions 

(6) and (7) result from solving equation (2) for a straight 

arc column. The same expressions are used to solve (2) 

again by identification in the Frenet-Serret referential.  

 

4. Derivation of the model 

Using a Taylor expansion, the Bessel function of the 

zeroth order can be reduced to second order terms as 

follows: 

𝐽0 (𝑞1
𝑟

𝑎
) = 1 − (

𝑞1𝑟

2𝑎
)
2

   (8) 

Sifting carefully through equation (3), we can rewrite it: 

∇⃗⃗ × �⃗� = −
𝜕�⃗� 

𝜕𝑡
≈ 0⃗   (9) 

Electro and magneto quasi-static conditions are 

satisfied because the AC arc is subject to short distances 

and very low frequencies [2].  

 

Fig.1. Tip-to-tip torch 

As shown in figures 1 and 2, in the general 3D Frenet-

Serret coordinate system, torsion can occur, leading to 

certain twisting. We denote by: 

𝜁 = 𝜂 − ∫ 𝜒(𝑠)𝑑𝑠
𝑠

0
  (10) 

𝜂 is the angle that provides zero-twisting and 𝜒(𝑠) is 

the torsion at s.  

In the Frenet-Serret referential, equation (9) yields: 

𝐸𝑠 =
𝐸𝑠0

1−𝜅 𝑟 cos 𝜁
≈ 𝐸𝑠0(1 + 𝜅 𝑟 cos 𝜁) (11) 

𝜅(𝑠) is the curvature at s. 

Using expressions (6), (8) and (11) and the Appendix A 

of [2], equation (2) leads by identification to: 

𝑣𝜈𝑎(𝑠, 𝑡) = 𝜆𝜅(5 −
4 cos𝛿 cos(2𝜔𝑡+𝛿)

1−sin 𝛿 sin(2𝜔𝑡+𝛿)
) + 𝑣𝜈𝑔(𝑠, 𝑡)

  (12) 

Equation (12) is of great relevance because it governs 

the motion of the curved AC and DC arcs. [3-5] obtained 

the same equation in the particular case of a DC arc. It’s 

important to take note that 𝑣𝜈 = 𝑣𝜈𝑔 − 𝑣𝜈𝑎 is the normal 

component of the relative velocity from relation (5) in the 

direction of curvature. We denote by: 

𝐶𝛿(𝑡) = 5 −
4 cos𝛿 cos(2𝜔𝑡+𝛿)

1−sin 𝛿 sin(2𝜔𝑡+𝛿)
  (13) 

This expression casts equation (12) into a more 

simplified form:  

𝑣𝜈𝑎(𝑠, 𝑡) = 𝐶𝛿(𝑡)𝜆𝜅(𝑠, 𝑡) + 𝑣𝜈𝑔(𝑠, 𝑡) (14) 

𝐶𝛿(𝑡) is plotted in [2] for various values of 𝛿. 𝛿 = 𝜋 2⁄  

corresponds to the DC case. 

To proceed further, we have to estimate 𝑣𝜈𝑔(𝑠, 𝑡) which 

will be obtained by solving the integral form of equation 

(1) in the Frenet-Serret referential. In order to solve for 

the shape of the arc afterwards, equation (14) must be 

written in an absolute coordinate system (Cartesian or 

polar) in the observer’s referential.  

5. Computation of the velocity of the plasma gas flow 

 

Fig.2. Arc parameters in the Frenet referential 

As mentioned in the previous section, equation (1) must 

be solved in the Frenet-Serret coordinate system to 

evaluate 𝑣𝜈𝑔(𝑠, 𝑡). However, it’s very tedious and 

painstaking to deal with the differential form of equation 

(1). Therefore, we will only investigate its integral form 

over a control volume englobing an elementary slice of 

the current carrying arc of length 𝑑𝑠 as shown in figure 2. 

It’s equally important to mention that the pressure tensor 

�̅̅� comprises the static pressure tensor and the viscous 

stress tensor: �̅̅� = �̅̅� − 𝜏̅�̅�𝑖𝑠𝑐𝑜𝑢𝑠. Thus, the integral form of 

(1) can be expressed by: 

∭ ∇(𝜌�⃗� ⊗ �⃗� 𝑇 + �̅̅� − 𝜏̅�̅�𝑎𝑥𝑤𝑒𝑙𝑙)𝑉
dVs = 0⃗  (15) 



The contribution of the time-derivative of �⃗�  is omitted 

because the dynamic inertia is significantly greater than 

the electrical inertia. Body forces such as gravity are 

neglected as well, given the fact that Archimedes’ number 

is much less than unity [4] (no natural convection). No 

relative motion is employed in this expression (�⃗�  is used 

instead of �⃗⃗⃗� ) because the motion of the arc corresponds 

to the motion of a temperature profile not of a solid body 

[5]. Using Ostrogradsky’s theorem we get: 

 ∯(𝜌�⃗� ⊗ �⃗� 𝑇 + �̅̅� − 𝜏̅�̅�𝑖𝑠𝑐𝑜𝑢𝑠)dAs⃗⃗ ⃗⃗ ⃗⃗  ⃗ =
𝑆

 ∯ (𝜏̅�̅�𝑎𝑥𝑤𝑒𝑙𝑙)dAs⃗⃗ ⃗⃗ ⃗⃗  ⃗
𝑆

  (16) 

In the Frenet-Serret coordinate system dAs⃗⃗ ⃗⃗ ⃗⃗  ⃗ (the 

elementary lateral surface)  is given by: 

dAs⃗⃗ ⃗⃗ ⃗⃗  ⃗ = ((1 − 𝑎 𝜅 𝑐𝑜𝑠𝜁)𝑢𝑟⃗⃗⃗⃗ −
𝑑𝑎

𝑑𝑠
𝑢𝑠⃗⃗⃗⃗  ) 𝑎 𝑑𝜁 𝑑𝑠 

 (17) 

Assuming that the arc radius a is constant and 𝑢𝑟⃗⃗⃗⃗ =

cos 𝜁
�⃗� 

𝑅
+ sin 𝜁

𝐼 ×�⃗� 

𝐼.𝑅
, and that an external magnetic field 

𝐵0(𝑠) is applied we get from [9]:  

𝑑∯ (�̅̅�𝑀𝑎𝑥𝑤𝑒𝑙𝑙)dAs⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
𝑆

𝑑𝑠
≈ 𝐼 × 𝐵0⃗⃗⃗⃗    (18) 

We limit our approximation to first order terms. All the 

expressions are calculated at s, but we omit its mention 

for simplicity sake (𝐼 , �⃗�  and 𝐼 × �⃗�  represent respectively 

the tangent, normal and binormal directions). 

For the left hand side of equation (16), the expression of 

the integral is more complex. However it can be 

approximated using a drag coefficient, especially when 

the flow injection is weak flow  (weak dynamic field) and 

the arc is mainly driven by the applied magnetic field. In 

this case we have [9]: 

𝑑∯ (𝜌�⃗⃗� ⊗�⃗⃗� 𝑇+�̅̅�−�̅̅�𝑣𝑖𝑠𝑐𝑜𝑢𝑠)dAs⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
𝑆

𝑑𝑠
≈ 𝐶𝐷𝑎𝜌𝑔𝑣𝜈𝑔

2  
𝑣𝜈𝑔⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝑣𝜈𝑔
 

 (19) 

Here 𝐶𝐷 is a drag coefficient. For low Reynold’s flows 

it is inversely proportional to Reynold’s and therefore to 

𝑣𝜈𝑔 and proportional to the viscosity 𝜇 of the plasma gas. 

This is assumed in to be the case for curved arcs under the 

effect of magnetic cross fields and weak arc blowing (or 

dynamic injection field). Equating expressions (18) and 

(19) leads to:  

𝑣𝜈𝑔 =
𝐾𝐼𝐵

𝜇
  (20) 

This relation is found in [2-4]. K is a constant. Here 𝐶𝐷 

is considered to be dependent on the inverse of Reynold’s.  

For arcs curved by dynamic transverse fields with no 

applied external magnetic fields and assuming that the 

self-induced magnetic field is negligible, the above 

expression doesn’t apply anymore because the RHS of 

equation (16) would become negligible. So the LHS must 

be zero. Accounting for small contribution of the effect 

viscosity and pressure change, we obtain that: 

𝑑∯ (𝜌�⃗⃗� ⊗�⃗⃗� 𝑇+�̅̅�−�̅̅�𝑣𝑖𝑠𝑐𝑜𝑢𝑠)dAs⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
𝑆

𝑑𝑠
≈ (𝜌𝑔𝑣𝜈𝑔

2 − 𝜌∞𝑣𝜈∞
2 )

�⃗� 

𝑅
≈ 0

  (21)  

𝑣𝜈∞is the upstream velocity of the flow. Hence: 

𝑣𝜈𝑔 = 𝑣𝜈∞√
 𝜌∞

𝜌𝑔
  (22) 

This expression is found in [2,4]. Note that the viscous 

forces could always be taken into account. Expressions of 

𝑣𝜈𝑔 involving them are derived in [2].  

6. Solutions for the planar arc 

Equation (14) must be written in an absolute referential 

in order to determine the motion of the arc. Subsequently, 

using a Cartesian or polar coordinate system, equation 

(14), for the 2D planar case, can be written as: 

{
 

 
�̇�

(1+𝑦′2)
1
2

=
𝐶𝛿(𝑡)𝜆𝑦

′′

(1+𝑦′2)
3
2

+ 𝑣𝜈𝑔(𝑠, 𝑡)                    (𝐶𝑎𝑟𝑡𝑒𝑠𝑖𝑎𝑛)

𝑟�̇�

(𝑟2+𝑟′2)
1
2

=
𝐶𝛿(𝑡)𝜆(−𝑟𝑟

′′+2𝑟′2+𝑟2)

(𝑟2+𝑟′2)
3
2

+ 𝑣𝜈𝑔(𝑠, 𝑡)     (𝑝𝑜𝑙𝑎𝑟)

  (23) 

Mathematical details can be found in [2]. In the 2D 

case, no torsion is involved so 𝜁 = 𝜂 and 𝑣𝜈𝑔⃗⃗ ⃗⃗ ⃗⃗  and �⃗�  are 

collinear. The values of the plasma gas velocity 𝑣𝜈𝑔, 

exiting the arc in the normal direction, can be estimated 

from section 5 according to the type of cross-field to 

which the arc is exposed. The “dot” and the “prime” 

derivatives in equation (23) designate partial derivatives 

with respect to time and space respectively. Expressions 

regarding the effects of the self-induced magnetic field 

are obtained in [2]. A certain dimensionless number found 

in the cited reference determines their prevalence over the 

resorting viscous forces. The analytical model that we 

have presented so far has been validated by means of 

MHD computational work that we will present in the 

following section along with the results. 

7. MHD computational work 

The software used for simulation is “code_Saturne”; a 

powerful solver for electric arc simulation based on the 

finite volume method. The gas employed is air at a 

pressure of 1 bar. Transient simulations are adopted with 

an absolute time step of 1 𝜇𝑠. The current is imposed at 

50 A for both AC and DC cases. For the AC case, the 

frequency is chosen to be 50 Hz. The geometry employed 



is displayed by figure 3. For more details on the boundary 

conditions, the mesh and the equations involved in the 

model, it is highly recommended to consult [2]. 

 
Fig. 3. Geometry used in the MHD model 

8. Results and comparison 

Figure 4 and table 1 show a good agreement for the AC 

arc between results obtained from the MHD numerical 

simulation and the analytical model presented in this 

paper. Other results can be found in [2], but are omitted 

here for the sake of simplicity. The cross-field used is a 

dynamic-type (gas injection). Also, other simulations 

have been run for self-induced and external magnetic 

cross-field. Again, they have all turned out to be 

congruent with the analytical model. It is important to 

mention here that air properties and formulas used to 

carry out the computations of the arc parameters for the 

analytical model are found in [2,6,8]. The Cartesian form 

of equation (23) is solved using MATLAB.  

 

Fig. 4. MHD (left) and analytical (right) results for a 

blown 50 A 50 Hz- air plasma arc (@ 1bar) with an 

injection velocity 𝑉𝑖𝑛 = 1𝑚. 𝑠
−1 at 𝜔𝑡 = 0,

𝜋

4
 ,
𝜋

2
 

S is the heat potential, T the temperature, Y the 

maximum displacement at electrode mid-length, a the arc 

radius and E the electric field. For the analytical 

approach, they are computed using equations (4), (6) and 

(23). For the calculation of a and E methods and 

expressions can be found in [2,6,8]. The reference 

temperature for S in our case is 𝑇0 = 4000𝐾. 

 

Table.1.Comparison table between MHD and analytical  

results for a blown 50 A 50 Hz- air plasma arc (@ 1bar) 

with an injection velocity 𝑉𝑖𝑛 = 1𝑚. 𝑠−1 at 𝜔𝑡 = 0,
𝜋

4
 ,
𝜋

2
 

𝜔𝑡 0 𝜋 4⁄  𝜋 2⁄  

Results MHD Theory MHD Theory MHD Theory 

𝑆𝑚𝑎𝑥(𝑊.𝑚
−1) - 740 - 10940 - 15980 

𝑇𝑚𝑎𝑥(𝐾) 5450 5280 7460 7120 11710 11680 

𝑌𝑚𝑎𝑥(𝑚𝑚) 2.3 2.4 1.5 1.4 0.95 0.95 

𝑎(𝑚𝑚) - - 2 2.2 2.3 2.2 

𝐸(𝑉.𝑚−1) 70 0 2950 2790 2450 2580 

 

9. Conclusion 

An analytical model has been established using a 

theoretical approach. It allows us to treat the complex 

physical problem using a rather simple method and obtain 

precious information about the arc, without having to 

resort to costly MHD simulations. Analytical and MHD 

results showed good agreement for several case studies. 

This allows us to validate our analytical approach. Slight 

differences between the MHD and the analytical model 

could be noticed. This could be attributed to the stringent 

assumptions used in the analytical case and the boundary 

conditions used in the MHD simulations. Further 

refinements to the model must be made by including 

radiation and the variation of the arc radius. Moreover, 

this approach in its current form does not account for 

instabilities caused by turbulence in large scale industrial 

plasmas. Nevertheless, it constitutes a handy tool for basic 

process design of industrial plasma torches and can be 

insightful in various plasma applications such as welding, 

cutting, circuit breakers, etc.… It can also potentially 

enable us to control plasma arcs by means of cross-fields. 
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