Morphological Semigroups and Scale-Spaces on Ultrametric Spaces - Mines Paris Accéder directement au contenu
Communication Dans Un Congrès Année : 2017

Morphological Semigroups and Scale-Spaces on Ultrametric Spaces

Jesus Angulo


Ultrametric spaces are the natural mathematical structure to deal with data embedded into a hierarchical representation. This kind of representations is ubiquitous in morphological image processing, from pyramids of nested partitions to more abstract dendograms from minimum spanning trees. This paper is a formal study of morphological operators for functions dened on ultrametric spaces. First, the notion of ultrametric structuring function is introduced. Then, using as basic ingredient the convolution in (max,min)-algebra, the multi-scale ultra-metric dilation and erosion are dened and their semigroup properties are stated. It is proved in particular that they are idempotent operators and consequently they are algebraically ultrametric closing and opening too. Some preliminary examples illustrate the behavior and practical interest of ultrametric dilations/erosions.
Fichier principal
Vignette du fichier
UltrametricSemigroups_ISMM17_final.pdf (1014.63 Ko) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01536368 , version 1 (11-06-2017)



Jesus Angulo, Santiago Velasco-Forero. Morphological Semigroups and Scale-Spaces on Ultrametric Spaces. 13th International Symposium on Mathematical Morphology and Its Applications to Signal and Image Processing, May 2017, Fontainebleau, France. pp.28-39, ⟨10.1007/978-3-319-57240-6_3⟩. ⟨hal-01536368⟩
324 Consultations
273 Téléchargements



Gmail Facebook Twitter LinkedIn More