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Abstract. Ultrametric spaces are the natural mathematical structure
to deal with data embedded into a hierarchical representation. This kind
of representations is ubiquitous in morphological image processing, from
pyramids of nested partitions to more abstract dendograms from min-
imum spanning trees. This paper is a formal study of morphological
operators for functions de�ned on ultrametric spaces. First, the notion
of ultrametric structuring function is introduced. Then, using as basic
ingredient the convolution in (max,min)-algebra, the multi-scale ultra-
metric dilation and erosion are de�ned and their semigroup properties
are stated. It is proved in particular that they are idempotent operators
and consequently they are algebraically ultrametric closing and open-
ing too. Some preliminary examples illustrate the behavior and practical
interest of ultrametric dilations/erosions.

Keywords: ultrametric space; ultrametric semigroup; idempotent op-
erator; (max,min)-convolution

1 Introduction

Morphological operators are classically de�ned for real-valued functions sup-
ported on Euclidean or Riemannian spaces [1] and are used for nonlinear im-
age processing. More recently, morphological semigroups for functions on length
spaces have been studied [3], whose basic ingredients are the convolution in the
(max,+)-algebra (or supremal convolution), the metric distance and a convex
shape function. More precisely, given a length space (X, d), a bounded func-
tion f : X 7→ R and an increasing convex one-dimensional (shape) function
L : R+ → R+ such that L(0) = 0, the multiscale dilation DL; tf and erosion
EL; tf operators of f on (X, d) according to L at scale t > 0 are de�ned as

DL; tf(x) = sup
y2X

�
f(y)− tL

�
d(x, y)

t

��
, ∀x ∈ X,

EL; tf(x) = inf
y2X

�
f(y) + tL

�
d(x, y)

t

��
, ∀x ∈ X.

A typical example of a shape function is L(q) = qP /P , P > 1, such that
the canonical shape function corresponds to the case P = 2: L(d(x, y)/t) =



d(x, y)2/2t2. The corresponding semigroups are just: DL; tDL; sf = DL; t+sf
and EL; tEL; sf = EL; t+sf . These semigroups lead to powerful scale-space prop-
erties for multiscale �ltering, regularization and feature extraction. The goal of
this paper is to consider a similar generalization of morphological semigroups to
the case of functions on ultrametric spaces.

An ultrametric space is a special kind of metric space in which the triangle
inequality is replaced with the stronger condition d(x, z) ≤max {d(x, y), d(y, z)}.
Several typical properties on the corresponding ultrametric balls are directly de-
rived from this ultrametric triangle inequality, which lead to nested partitions of
the space. Related to the latter property, every �nite ultrametric space is known
to admit a natural hierarchical description called a dendogram, also known as
downward tree. Dendrograms represent a tree structure of the data, where the
data points are the leaves of the tree and the vertical axis reveals the ordering
of the objects into nested clusters of increasing ordering. Datasets endowed with
a hierarchical classi�cation structure are nowadays used in many challenging
problems; like the case of very high dimensional spaces where the data structure
is generally given by cluster-like organization [12]. In the case of morphological
image processing, hierarchical representations are ubiquitous [15,6,10].

Processing a function whose domain is such hierarchical representation re-
quires the formulation of �lters and operators on ultrametric spaces. The coun-
terpart of Heat kernel and Heat semigroups on ultrametric spaces has been
widely studied in recent work [4] (for discrete ultrametric spaces) and [5] (for
complete ultrametric spaces). Indeed using the theory of [4,5], di�usion-based
signal/image processing techniques can be applied to �lter out functions on a
hierarchy. A similar counterpart of morphological signal/image processing for
such representations is developed in this paper.

Our starting point is the notion convolution of two functions in the (max,min)-
algebra. Using this operator, we have recently shown that morphological oper-
ators on Euclidean spaces are natural formulated in (max,min)-algebra [2]. We
introduce (max,min)-convolution based morphological operators on ultrametric
spaces, where the structuring functions are scaled versions of the ultrametric
distance (raised to a power p ≥ 1). We study the corresponding semigroups
properties and illustrate their interest in �ltering and feature extraction.

In the state-of-the-art on mathematical morphology, there are several re-
search lines related to our work. On the one hand, the theory of adjunctions
on the lattice of dendograms [8]. We remark that in our framework, the opera-
tors will be de�ned on the lattice of functions on the ultrametric space and not
in the lattice of dendograms itself. On the other hand, the various adjunctions
on edge or node weighted graphs and their interpretations in terms of �ood-
ing [7,9,13] and their application to construct segmentation algorithms from
invariants of processed minimum spanning trees with associated morphological
operators [10,11].



2 Ultrametric spaces

Let (X, d) be a metric space. The metric d is called an ultrametric if it satis�es
the ultrametric inequality, i.e., d(x, y) ≤ max{d(x, z), d(z, y)}, that is obviously
stronger than the usual triangle inequality. In this case (X, d) is called an ul-
trametric space. An ultrametric space (X, d) is called discrete if the set X is:
i) countable, ii) all balls Br(x) are �nite, and iii) the distance function d takes
only integer numbers.

Properties of ultrametric balls. Let us consider some well known prop-
erties of ultrametric spaces that directly derive from the ultrametric triangle
inequality, proofs can be �nd in any basic reference on the �eld. The intuition
behind such seemingly strange e�ects is that, due to the strong triangle inequal-
ity, distances in ultrametrics do not add up.

(1) The strict ball B<r(x) as well as the non-strict ball B�r(x) are both open
as well as closed sets for the topology de�ned by the metric.

(2) Every point inside a ball is its center, i.e., if d(x, y) < r then Br(x) = Br(y).
(3) Given three points x, y, z ∈ X,

y, z ∈ Br(x)⇒ d(y, z) < r,

y ∈ Br(x), z /∈ Br(x)⇒ d(y, z) ≥ r.

(4) For two intersecting balls, one contains the other, i.e., if Br(x) ∩ Bs(y) 6= ∅
then either Br(x) ⊆ Bs(y) or Bs(y) ⊆ Br(x).

(5) Any two ultrametric balls of the same radius r are either disjoint or identical.
(6) The set of all open balls with radius r and center in a closed ball of radius

r > 0 forms a partition of the latter, and the mutual distance of two distinct
open balls is again equal to r.

Consequently, the collection of all distinct balls of the same radius r forms
a partition X; for increasing values of r, the balls are also increasing, hence we
obtain a family of nested partitions of X which forms a hierarchy.

Examples of ultrametric spaces. The p-adic numbers form a complete
ultrametric space. The Cantor set, which is a fractal model, is also an ultra-
metric space. Besides these examples, we are interested for our applications in
the duality between discrete ultrametric spaces and downward (or rooted) trees,
which are also known as dendograms.

We can introduce formally a downward tree Γ as follows. Let Γ be a countable
connected graph, where the set of vertices of Γ consists of disjoint union of
subsets {Γk}1k=0 with the following properties: i) from each vertex v ∈ Γk there
is exactly one edge to Γk+1; ii) for each vertex v ∈ Γk the number of edges
connecting v to Γk�1 is �nite and positive, provided k ≥ 1; iii) if |k− l| 6= 1 then
there is no edges between vertices of Γk and Γl. Let d� (v, w) denote the graph
distance between the vertices v and w of graph Γ , i.e., the smallest number of
edges in a path connecting the two vertices. For two vertices, x, y ∈ Γ0, their
nearest common ascestor is the vertex a ∈ Γk. Note that a is connected to x and
y by downward paths of k edges. Then (Γ0, d) is a discrete ultrametric space.



Dually, any discrete ultrametric space (X, d) admits a representation as the
bottom (i.e., set of leaves) of a downward tree Γ . De�ne the vertices of Γ to
be all distinct balls {Bk(x)} where x ∈ X and k ∈ Z+. Two balls Bk(x) and
Bl(y) are connected by an edge in Γ if |k − l| 6= 1 and one of them is subset of
the other. That is Γ0 coincides with the set X, Γ1 consists of balls of radii 1,
etc. Clearly, edges exist only between the vertices of Γk and Γk+1. All balls of
a given radius k provide a partition of Γ0, so that Γk consists of the elements
of the partition. Each of the balls of radius k is partitioned into �netely many
smaller balls of radius k− 1 and is contained in exactly one ball of radius k+1.
The ultrametric distance can be also de�ned as d(x, y) = min {k : y ∈ Bk(x)}.

3 Dilation and erosion semigroups on ultrametric spaces

Functions on ultrametric spaces. Given a separable and complete ultramet-
ric space (X, d), let us consider the family of non-negative bounded functions f
on (X, d), f : X → [0,M ]. The complement (or negative) function of f , denoted
f c, is obtained by the involution f c(x) = M − f(x). The set of non-negative
bounded functions on ultrametric space is a lattice with respect to the pointwise
maximum ∨ and minimum ∧.

3.1 Ultrametric structuring functions

De�nition 1. A parametric family {bt}t>0 of functions bt : X×X → (−∞,M ]
is called by us an ultrametric structuring function in the ultrametric space (X, d)
if the following conditions are satis�ed for all x, y ∈ X and for all t, s > 0:

(1) Total mass inequality: supy2X bt(x, y) ≤M
(2) Completeness (or conservative): bt(x, x) =M
(3) Symmetry: bt(x, y) = bt(y, x)
(4) A structuring function is monotonically decreasing in the ultrametric dis-

tance.
(5) The complement of the structuring function, i.e., bct(x, y) =M − bt(x, y), is

an ultrametric distance in (X, bct)
(6) Maxmin semigroup property:

bmax(t;s)(x, y) = sup
z2X
{bt(x, z) ∧ bs(z, y)} . (1)

Let us in particular introduce the so-called natural isotropic structuring func-
tion bP;t(x, y) = bP;t (d(x, y)), P > 0, in (X, d) as the following strictly mono-
tonically decreasing function whose �shape� depends on power P :

bP;t(x, y) =M −
�
d(x, y)

t

�P
. (2)

The case P = 1 is considered the canonical ultrametric structuring function.



Proposition 1. For any P > 0, the isotropic P-power function bP;t(x, y) is an
ultrametric structuring function.

Proof. The properties 1 (total mass inequality), 2 (completeness) and 3 (sym-
metry) are obvious from the de�nition of ultrametric distance. For property 4,
the P-power function is also clearly monotonically increasing in the ultrametric
distance and vanishes at 0.

For property 5, we need to prove that if (X, d) is an ultrametric space, then
(X, bct) is an ultrametric space too, with bcP;t(x, y) = t�P d(x, y)P , t > 0, P > 0.
Let x, y, z ∈ X be given, we have d(x, y) ≤ max{d(x, z), d(z, y)}. Clearly,

t�P d(x, y)P ≤ t�P max{d(x, z), d(z, y)}P = max{t�P d(x, z)P , t�P d(z, y)P }

Thus t�P d(x, y)P is an ultrametric on X.
For property 6 on max-semigroup in the (max,min)-convolution, we will use

well-known results from this convolution [2]. First, let write the function f by
its strict lower level sets:

f(x) = inf
�
λ : x ∈ Y �� (f)

	
,

where Y �� (f) = {x ∈ X : f(x) < λ}. In fact, given t, s > 0 we will prove the
dual semigroup property

bcP;max(t;s)(x, y) = inf
z2X

�
bcP;t(x, z) ∨ bcP;s(z, y)

	
.

which is just equivalent to the one we have since:

sup
z2X
{bP;t(x, z) ∧ bP;s(z, y)} =M − inf

z2X

�
t�P d(x, z)P ∨ s�P d(z, y)P

	
.

Without the loss of generality, we can �x P = 1. By using the classical result
from level set representations

Y �� (φ1 ∨ φ2) = {x ∈ X : φ1(x) < λ and φ2(x) < λ} = Y �� (φ1) ∩ Y �� (φ2) ,

the condition, ∀x, y ∈ X,

Y ��
�
t�1d(x, z) ∨ s�1d(z, y)

�
=
�
∃z ∈ X :

�
t�1d(x, z) ∨ s�1d(z, y)

�
< λ

	
,

becomes
�
Y ��

�
t�1d(x, z)

�
∩ Y ��

�
s�1d(z, y)

�
6= ∅
	
, or equivalently, ∀x, y ∈ X,

∃z ∈ X such that B�t(z) ∩B�s(z) 6= ∅. In addition, B�t(x) = B�t(z), B�s(y) =
B�s(z). Using the properties of ultrametric balls, the intersection of two balls cen-
tered at z means that there is ball which contains the other of radius λmax(t, s)
and that x and y belongs to this ball, i.e.,

{d(x, y) < λmax(t, s)} 6= ∅.

In conclusion,

Y ��
�
t�1d(x, z) ∨ s�1d(z, y)

�
= Y ��

�
max (t, s)

�1
d(x, y)

�
,

and therefore: infz2X {bct(x, z) ∨ bcs(z, y)} = bcmax(t;s)(x, z).



3.2 Ultrametric dilation and erosion multiscale operators

De�nition 2. Given an ultrametric structuring function {bt}t>0 in (X, d), for
any non-negative bounded function f the ultrametric dilation Dtf and the ultra-
metric erosion Etf of f on (X, d) according to bt are de�ned as

Dtf(x) = sup
y2X
{f(y) ∧ bt(x, y)} , ∀x ∈ X, (3)

Etf(x) = inf
y2X
{f(y) ∨ bct(x, y)} , ∀x ∈ X. (4)

We can easily identify that the ultrametric dilation is a kind of convolution
in (max,min)-algebra of function f by bt.

Proposition 2. Ultrametric dilation Dtf and erosion Etf have the following
properties.

(1) Commutation with supremum and in�mum. Given a set of functions
{fi}, i ∈ I and ∀x ∈ X, ∀t > 0, we have

Dt

 _
i2I

fi(x)

!
=
_
i2I

Dtfi(x); Et

 ^
i2I

fi(x)

!
=
^
i2I

Etfi(x).

(2) Increasingness. If f(x) ≤ g(x), ∀x ∈ X, then

Dtf(x) ≤ Dtg(x); and Etf(x) ≤ Etg(x), ∀x ∈ X, ∀t > 0.

(3) Extensivity and anti-extensivity

Dtf(x) ≥ f(x); and Etf(x) ≤ f(x), ∀x ∈ X, ∀t > 0.

(4) Duality by involution. For any function f and ∀x ∈ X, one has

Dtf(x) = [Etf
c(x)]

c
; and Etf(x) = [Dtf

c(x)]
c
, ∀t > 0.

(5) Ordering property. If 0 < s < t then ∀x ∈ X

inf
X
f ≤ Etf(x) ≤ Esf(x) ≤ f(x) ≤ Dsf(x) ≤ Dtf(x) ≤ sup

X
f.

(6) Semigroup. For any function f and ∀x ∈ X, and for all pair of scales
s, t > 0,

DtDsf = Dmax(t;s)f ;

EtEsf = Emax(t;s)f.

Proof. For property 1, on the distributivity of the operators, we have for all
x ∈ X and for t:

Dt

 _
i2I

fi(x)

!
= sup
y2X

�
sup
i2I

fi(y) ∧ bt(x, y)
�

= sup
i2I

sup
y2X
{fi(y) ∧ bt(x, y)} =

_
i2I

Dtfi(x).



and similarly for the ultrametric erosion.
The properties 2 and 3 of increasingness and extensivity/anti-extensivity are

obvious from the properties of supremum/in�mum and the property bt(x, y) ≤
M , with bt(x, x) =M .

For property 4, on duality by involution, let us prove the �rst relationship
since the other one is obtained by a similar procedure. For all x ∈ X and for t:

[Etf
c(x)]

c
=M − inf

y2X
{(M − f(y)) ∨ bct(x, y)}

=M − inf
y2X
{(M − f(y)) ∨ (M − bt(x, y))}

= − inf
y2X
{−f(y) ∨ −bt(x, y)} = sup

y2X
{f(y) ∧ bt(x, y)} = Dtf(x).

In order to prove the semigroup property 6, let us focus on the ultrametric
dilation Dt. For any x ∈ X and any pair t, s > 0, one has:

DtDsf(x) = sup
y2X

[Dsf(y) ∧ bt(x, y)]

= sup
y2X

�
sup
z2X
{f(z) ∧ bs(y, z)} ∧ bt(x, y)

�
= sup
z2X

�
f(z) ∧ sup

y2X
{bs(y, z) ∧ bt(x, y)}

�
.

Then using the property (6) of semigroup for ultrametric structuring functions,
it is obtained that

DtDsf(x) = sup
z2X

�
f(z) ∧ bmax(t;s)(x, z)

	
= Dmax(t;s)f(x).

The result for the ultrametric erosion is just obtained by duality.
The proof of ordering property 5 for the case Dt(f)(x) ≥ Ds(f)(x), ∀x ∈ X

is based on the fact for t > s > 0, by the semigroup property on the structuring
functions, one has

bt(x, y) = sup
z2X
{bt(x, z) ∧ bs(z, y)} ⇒ bt(x, y) ≥ bs(x, y),

and therefore

Dtf(x) = sup
y2X
{f(y) ∧ bt(x, y)} ≥ sup

y2X
{f(y) ∧ bs(x, y)} = Dsf(x).

Considering the classical algebraic de�nitions of morphological operators [16]
for the case of ultrametric semigroups {Dt}t�0, resp. {Et}t�0, they have the
properties of increasingness and commutation with supremum, resp. in�mum,
which involves that

Dt is a dilation and Et is an erosion.



In addition, they are extensive, resp. anti-extensive, operators and, by the supre-
mal semigroups, both are idempotent operators, i.e., DtDt = Dt and EtEt = Et,
which implies that

Dt is a closing and Et is an opening.

Finaly, their semigroups are just the so-called granulometric semigroup [16] and
therefore

{Dt}t�0 is an anti-granulometry and {Et}t�0 is a granulometry,

which involve interesting scale-space properties useful for �ltering and decom-
position.

At �rst sight, one can be perplexed by this property: ultrametric dilation
(resp. ultrametric erosion) is also a closing (resp. opening), since ultrametric
dilation commutes with the supremum and the class of invariants of a closing is
stable by in�mum. However, as these suprema are taken on ultrametric balls of
the various partitions, their class is also stable by in�mum. The same result was
already obtained by Meyer [8] for set operators on partitions.

Note that we do not use the duality by adjunction to link this pair of dila-
tion/erosion since they are already idempotent operators and do not need to com-
pose them to achieve such goal. Reader interested on adjunction in (max,min)-
algebra is referred to [2].

3.3 Discrete ultrametric dilation and erosion semigroups

Let (X, d) be a discrete ultrametric space. Choose a sequence {ck}1k=0 of positive
reals such that c0 = 0 and ck+1 > ck ≥ 0, k = 0, 1, · · · . Then, given t > 0, ones
de�nes the sequence {bk;t}1k=0, such that

bk;t =M − t�1ck. (5)

Let us de�ne ∀k, ∀x ∈ X, the ultrametric dilation and erosion of radius k on the
associated partition as

Q_k f(x) = sup
y2Bk(x)

f(y), (6)

Q^k f(x) = inf
y2Bk(x)

f(y). (7)

Using now (6) and (7), it is straightforward to see that the ultrametric dilation
and ultrametric erosion of f by bk;t can be written as

Dtf(x) = sup
0�k�1

{Q_k f(x) ∧ bk;t} , (8)

Etf(x) = inf
0�k�1

{Q^k f(x) ∨ (M − bk;t)} . (9)

It is obvious using this formulation that do not need to compute explicitly
the ultrametric distance between all-pairs of points x and y and that Dtf(x)
and Etf(x) are obtained by working on the supremum and in�mum mosaics
Q_k f(x) and Q^k f(x) from the set of partitions, which is usually �nite, i.e., k =
0, 1, · · · ,K.



(a)

(b) (d)

(c) (e)

(f)

(g)

Fig. 1. Ultrametric scale-spaces: (a) original image f(x), (b) and (c) ultrametric dila-
tion Dtf(x) with t = 0:01 and t = 0:1, (d) and (e) ultrametric erosion Etf(x) with
t = 0:01 and t = 0:1, (f)1-mean with t = 0:01, (g) image enhancement by1-Laplacian
f(x)� L1

t f(x) with t = 0:01.

3.4 Ultrametric 1-mean and 1-Laplacian

Ultrametric ∞-mean. Given a set of N points xi ∈ X ⊂ Rn, the L1-
barycenter, known as 1-center (minimax center), corresponds to the minimizer
of max-of-distances function. From a geometric viewpoint, it corresponds to the
center of the minimum enclosing ball of the points xi. In the case of R, which
can be called the ∞-mean, the minimax center equals m1 = 1

2 (max1�i�N xi +
min1�i�N xi). In our framework, the ultrametric dilation and erosion can be
used to introduce the notion of ultrametric ∞-mean at scale t just as

Mtf(x) =
1

2
(Dtf(x) + Etf(x)) (10)

This operator is related to the solution of the Tug-of-War stochastic game [14].

Ultrametric ∞-Laplacian. The in�nity Laplace (or L1-Laplace) operator
is a 2nd-order partial di�erential operator. Viscosity solutions to the equation
∆1u = 0 are known as in�nity harmonic functions. More recently, viscosity
solutions to the in�nity Laplace equation have been identi�ed with the payo�
functions from randomized tug-of-war games [14]. In the case of a length spaces,
there exists a conterpart, i.e.,

L1u(x) = max
y2
;y 6=x

�
u(y)− u(x)
d(x, y)

�
+ min
y2
;y 6=x

�
u(y)− u(x)
d(x, y)

�



In the case of ultrametric spaces, we introduce the multi-scale ultrametric ∞-
Laplacian, which mimics the idea of the second-order di�erential operator, as
follows:

L1t f(x) = (Dtf(x)− f(x))− (f(x)− Etf(x))
= Dtf(x) + Etf(x)− 2f(x). (11)

As for the standard laplacian, this operator can be used for enhancement of
�edges� of function f : f 7→ f̃t(x) = f(x)− L1t f(x).

(a) f(x)

(b) for d(x; y) computation

(c) Etf(x) (d) f(x)� Etf(x)

(e) L1
t f(x) (f) f(x)� L1

t f(x)

Fig. 2. Ultrametric morphological processing of bimodal image from quantitative phase
microscopy: the intensity image in (a) is processed using the ultrametric space derived
from the phase image in (b), with scale parameter t = 0:005.

4 Applications to image and data processing

For the examples that we consider here the ultrametric space (X, d) is built from
a minimum spanning tree (MST). First, let G be an edge-weighted undirected
neighbor graph with points x ∈ X as vertices and all edge weights as nonnegative
values. An MST of G is a spanning tree that connects all the vertices together
with the minimal total weighting for its edges, and let d(x, y) be the largest edge
weight in the path of the MST between x and y. Then the vertices of the graph
G, with distance measured by d form an ultrametric space. By thresholding the
corresponding MST at k, 0 ≤ k ≤ K, a set of partitions is obtained which
produces all balls Bk(x).

For the case of the discrete images or signals used in the examples, G is 4-
connected pixel neighbor graph and the edge weights are the grey-level di�erence.
In addition, a discrete ultrametric structuring function is always considered, i.e.,
bk;t =M − t�1ck, with ck = k.



Fig. 3. Ultrametric dilation Dtf(x) (in red), erosion Etf(x) (in blue) and 1-mean
Mtf(x) (in green) of 1D signal f(x).

The �rst example in Fig. 1 illustrates scale-space of ultrametric dilation Dtf
and Etf , for two values of scale t. For t = 0.01, the associated ultrametric ∞-
mean and enhancement by ∞-Laplacian are also given. One can observe that
the operators acting on the ultrametric balls naturally preserve the signi�cant
edges. Fig. 2 provides a case of a bimodal image from cell microscopy, where the
quantitative phase image (b) is used to built the ultrametric space, and then, the
intensity image (a) is ultrametrically processed using such space. A 1D signal,
intrinsically organized into clusters, captured by the ultrametric point space, is
used in Fig. 3. The regularization obtained by these operators can be useful in
many applications of data processing.

5 Conclusion and Perspectives

The theory introduced in this paper provides the framework to process images
or signals de�ned on a hierarchical representation associated to an ultrametric
distance space. The e�ect of the operators depends on both the scale parameter
and the underlying ultrametric distance. These operators have the fundamental
property of acting on the function according to the pyramid of partitions asso-
ciated to its ultrametric domain and therefore the notion of pixel is replaced by
that of class of the partition at a given value of the hierarchy.

Ongoing work will study, on the one hand, the properties of other ultrametric
structuring functions inspired from ultrametric heat kernel functions [4,5] and on
the other hand, the existence of a Hamilton�Jacobi PDE on ultrametric spaces
using pseudo-di�erential operators.
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