E. Arias-castro, D. Masony, and B. Pelletier, On the estimation of the gradient lines of a density and the consistency of the mean-shift algorithm, Journal of Machine Learning Research, p.2015
URL : https://hal.archives-ouvertes.fr/hal-01314654

I. M. Loubes and B. Pelletier, A kernel-based classifier on a Riemannian manifold, Statistics & Decisions, vol.26, issue.1, pp.35-51, 2008.
DOI : 10.1524/stnd.2008.0911

URL : https://hal.archives-ouvertes.fr/hal-00635443

B. Pelletier, Kernel density estimation on Riemannian manifolds, Statistics & Probability Letters, vol.73, issue.3, pp.297-304, 2005.
DOI : 10.1016/j.spl.2005.04.004

R. Subbarao and P. Meer, Nonlinear Mean Shift over Riemannian Manifolds, International Journal of Computer Vision, vol.22, issue.11, pp.1-20, 2009.
DOI : 10.1007/s11263-008-0195-8

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

Y. Wanga, X. Huang, and L. Wua, Clustering via geometric median shift over Riemannian manifolds, Information Sciences, vol.220, pp.292-305
DOI : 10.1016/j.ins.2012.07.009

Y. H. Wang and C. Z. Han, PolSAR Image Segmentation by Mean Shift Clustering in the Tensor Space, Acta Aut. Sinica, vol.36, issue.6, pp.798-806, 2010.

E. Chevallier, F. Barbaresco, and J. Angulo, Probability Density Estimation on the Hyperbolic Space Applied to Radar Processing, GSI'15, pp.753-761, 2015.
DOI : 10.1007/978-3-319-25040-3_80

URL : https://hal.archives-ouvertes.fr/hal-01121090/document

D. M. Asta, Kernel Density Estimation on Symmetric Spaces, pp.779-787, 2015.
DOI : 10.1007/978-3-319-25040-3_83

URL : http://arxiv.org/abs/1411.4040

J. Anker and P. Ostellari, The heat kernel on noncompact symmetric spaces, Lie groups and symmetric spaces, pp.21027-21073, 2003.
DOI : 10.1090/trans2/210/03

URL : https://hal.archives-ouvertes.fr/hal-00002509

A. Decurninge and F. Barbaresco, Robust Burg Estimation of Radar Scatter Matrix for Mixtures of Gaussian Stationary Autoregressive Vectors, submitted to IET UK, 1601.

A. Decurninge, Univariate and multivariate quantiles, probabilistic and statistical approaches; radar applications, 2015.
URL : https://hal.archives-ouvertes.fr/tel-01129961

J. F. Degurse, L. Savy, J. P. Molinie, and S. Marcos, A Riemannian Approach for Training Data Selection in Space-Time Adaptive Processing Applications, Radar Symposium (IRS), vol.1, pp.319-324, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00933419

E. Chevallier, Morphology, Geometry and Statistics in non-standard imaging, Mines ParisTech PhD, 2015.

L. Yang, Medians of probability measures in Riemannian manifolds and applications to radar target detection, 2012.
URL : https://hal.archives-ouvertes.fr/tel-00664188

M. Arnaudon, F. Barbaresco, and L. Yang, Riemannian Medians and Means With Applications to Radar Signal Processing, IEEE Journal of Selected Topics in Signal Processing, vol.7, issue.4, pp.4-595, 2013.
DOI : 10.1109/JSTSP.2013.2261798

F. Barbaresco, Information Geometry of Covariance Matrix: Cartan-Siegel Homogeneous Bounded Domains, Mostow/Berger Fibration and Fr?chet Median, pp.199-256
DOI : 10.1007/978-3-642-30232-9_9

F. Barbaresco and F. , Koszul Information Geometry and Souriau Geometric Temperature/Capacity of Lie Group Thermodynamics, Entropy, vol.41, issue.8, pp.4521-4565, 2014.
DOI : 10.3390/e16084521

URL : http://doi.org/10.3390/e16084521

F. Barbaresco, Symplectic Structure of Information Geometry: Fisher Metric and Euler-Poincar?? Equation of Souriau Lie Group Thermodynamics, pp.529-540, 2015.
DOI : 10.1007/978-3-319-25040-3_57

S. Watts, Modelling of coherent detectors in sea clutter, 2015 IEEE Radar Conference (RadarCon), pp.105-110, 2015.
DOI : 10.1109/RADAR.2015.7130979

S. Watts, Modeling and simulation of coherent sea clutter A new method for the simulation of coherent radar sea clutter, IEEE Trans AES IEEE, vol.48, issue.411, pp.3033-3317, 2011.

V. Corretja, J. Petitjean, J. Quellec, S. Kemkemian, H. Thuilliez et al., Sea-spike analysis in high range and Doppler resolution radar data, 2014 International Radar Conference, pp.1-6, 2014.
DOI : 10.1109/RADAR.2014.7060273

F. Barbaresco, Super-resolution spectrum analysis regularization: Burg, Capon & AGO-antagonistic algorithms, p.96, 1996.

M. Calvo and J. Oller, A distance between elliptical distributions based in an embedding into the Siegel group, Journal of Computational and Applied Mathematics, vol.145, issue.2, pp.319-334, 2002.
DOI : 10.1016/S0377-0427(01)00584-2

S. ?. Helgason, Geometric Analysis on Symmetric Spaces, Math. Surveys and Monographs, vol.39, 1994.
DOI : 10.1090/surv/039

B. Jeuris, R. Ben, and . Vandebril, The Kähler mean of block-Toeplitz matrices with Toeplitz structured blocks, SIAM Journal on Matrix Analysis and Applications, vol.2, p.533797, 2016.