Supervised Morphology for Structure Tensor-Valued Images Based on Symmetric Divergence Kernels - Archive ouverte HAL Accéder directement au contenu
Communication Dans Un Congrès Année : 2013

Supervised Morphology for Structure Tensor-Valued Images Based on Symmetric Divergence Kernels

(1) , (1)
1
Santiago Velasco-Forero
  • Fonction : Auteur
  • PersonId : 1010164
Jesus Angulo

Résumé

Mathematical morphology is a nonlinear image processing methodology based on computing min/max operators in local neighbourhoods. In the case of tensor-valued images, the space of SPD matrices should be endowed with a partial ordering and a complete lattice structure. Structure tensor describes robustly the local orientation and anisotropy of image features. Formulation of mathematical morphology operators dealing with structure tensor images is relevant for texture filtering and segmentation. This paper introduces tensor-valued mathematical morphology based on a supervised partial ordering, where the ordering mapping is formulated by means of positive definite kernels and solved by machine learning algorithms. More precisely, we focus on symmetric divergences for SPD matrices and associated kernels.
Fichier principal
Vignette du fichier
VelascoAngulo_Tensor.pdf (982.33 Ko) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01536382 , version 1 (11-06-2017)

Identifiants

Citer

Santiago Velasco-Forero, Jesus Angulo. Supervised Morphology for Structure Tensor-Valued Images Based on Symmetric Divergence Kernels. First International Conference on Geometric Science of Information (GSI'2013), Aug 2013, Paris, France. pp.543 - 550, ⟨10.1007/978-3-642-40020-9_60⟩. ⟨hal-01536382⟩
140 Consultations
211 Téléchargements

Altmetric

Partager

Gmail Facebook Twitter LinkedIn More