J. Schijve, Fatigue of Structures and Materials 2nd edn, 2009.

K. Shiozawa and H. Matsushita, Crack initiation and small fatigue crack growth behaviour of beta Ti-15V-3Cr-3Al-3Sn alloy Fatigue'96 Proc. 6th Int, p.301, 1996.

P. Paris and F. Erdogan, A critical analysis of crack propagation laws, J. Basic Eng. (Trans ASME), vol.85, pp.528-562, 1963.

P. Forsyth, A two stage process of fatigue crack growth Proc. Crack Propagation Symp, vol.1, pp.76-94, 1961.

P. Paris, M. Gomez, and A. , A rational analytic theory of fatigue Trend Eng, vol.13, pp.9-14, 1961.

S. Pearson, Initiation of fatigue cracks in commercial aluminium alloys and the subsequent propagation of very short cracks, Eng. Fract. Mech, vol.7, pp.235-282, 1975.

D. Davidson, K. Chan, R. Mcclung, and S. Hudak, Small fatigue cracks Compr. Struct. Integr, vol.4, pp.129-64, 2003.

D. Davidson, K. Chan, and R. Mcclung, Cu-bearing high-strength low-alloy steels: the influence of microstructure on the initiation and growth of small fatigue cracks Metall, Mater. Trans. A, vol.27, pp.2540-56, 1996.

U. Krupp, Fatigue Crack Propagation in Metals and Alloys: Microstructural Aspects and Modelling Concepts, 2007.

A. Rovinelli, R. Lebensohn, and M. Sangid, Influence of microstructure variability on short crack behavior through postulated micromechanical short crack driving force metrics, Eng. Fract. Mech, vol.138, pp.265-88, 2015.

P. Neumann, Coarse slip model of fatigue Acta Metall, vol.17, pp.1219-1244, 1969.

A. Mcevily and R. Boettner, On fatigue crack propagation in f.c.c. metals Acta Metall, vol.11, pp.725-768, 1963.

J. Rice and R. Thomson, Ductile versus brittle behaviour of crystals Phil, Mag, vol.29, pp.73-97, 1974.

R. Asaro, Crystal plasticity Trans. ASME, J. Appl. Mech, vol.50, pp.921-955, 1983.

A. Wilkinson, Modelling the effects of texture on the statistics of stage I fatigue crack growth Phil, Mag. A, vol.81, pp.841-55, 2001.

E. Ferrie and M. Sauzay, Influence of local crystallographic orientation on short crack propagation in high cycle fatigue of 316 LN steel, J. Nucl. Mater, pp.386-388, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00446063

G. Potirniche, S. Daniewicz, and J. Newman, Simulating small crack growth behaviour using crystal plasticity theory and finite element analysis Fatigue Fract, Eng. Mater. Struct, vol.27, pp.59-71, 2004.

E. Bitzek and P. Gumbsch, Mechanisms of dislocation multiplication at crack tips Acta Mater, vol.61, pp.1394-403, 2013.

M. Sangid, T. Ezaz, H. Sehitoglu, and . Robertson-i-m, Energy of slip transmission and nucleation at grain boundaries Acta Mater, vol.59, pp.283-96, 2011.

A. Argon, Mechanics and physics of brittle to ductile transitions in fracture Trans, ASME, J. Eng. Mater. Technol, vol.123, pp.1-11, 2001.

A. Giannattasio and S. Roberts, Strain-rate dependence of the brittle-to-ductile transition temperature in tungsten Phil, Mag, vol.87, pp.2589-98, 2007.

Y. Guilhem, S. Basseville, F. Curtit, J. Stéphan, and G. Cailletaud, Investigation of the effect of grain clusters on fatigue crack initiation in polycrystals, Int. J. Fatigue, vol.32, pp.1748-63, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00509802

M. Sangid, H. Maier, and H. Sehitoglu, An energy-based microstructure model to account for fatigue scatter in polycrystals, J. Mech. Phys. Solids, vol.59, pp.595-609, 2011.

H. Mughrabi, Cyclic slip irreversibilities and the evolution of fatigue damage Metall, Mater. Trans. B, vol.40, pp.431-53, 2009.

V. Bennett and D. Mcdowell, Polycrystal orientation distribution effects on microslip in high cycle fatigue, Int. J. Fatigue, vol.25, pp.27-39, 2003.

A. Fatemi and D. Socie, Critical plane approach to multiaxial fatigue damage including outof-phase loading Fatigue Fract, Eng. Mater. Struct, vol.11, pp.149-65, 1988.

J. Rice, Dislocation nucleation from a crack tip: an analysis based on the Peierls concept, J. Mech. Phys. Solids, vol.40, pp.239-71, 1992.

M. Tschopp and D. Mcdowell, Influence of single crystal orientation on homogeneous dislocation nucleation under uniaxial loading, J. Mech. Phys. Solids, vol.56, pp.1806-1836, 2008.

J. Hochhalter, A geometric approach to modeling microstructurally small fatigue crack formation: III. Development of a semi-empirical model for nucleation Model Simul, Mater. Sci. Eng, vol.19, p.35008, 2011.

A. Cerrone, Implementation and verification of a microstructure-based capability for modeling microcrack nucleation in LSHR at room temperature Model Simul, Mater. Sci. Eng, vol.23, p.35006, 2015.

S. Yeratapally, M. Glavicic, M. Hardy, and M. Sangid, Microstructure based fatigue life prediction framework for polycrystalline nickel-base superalloys with emphasis on the role played by twin boundaries in crack initiation Acta Mater, vol.107, pp.152-67, 2016.

G. Castelluccio and D. Mcdowell, Microstructure-sensitive small fatigue crack growth assessment: effect of strain ratio, multiaxial strain state, and geometric discontinuities, Int. J. Fatigue, vol.82, pp.521-530, 2015.

W. Musinski and D. Mcdowell, Simulating the effect of grain boundaries on microstructurally small fatigue crack growth from a focused ion beam notch through a threedimensional array of grains Acta Mater, vol.112, pp.20-39, 2016.

W. Ludwig, New opportunities for 3D materials science of polycrystalline materials at the micrometre lengthscale by combined use of x-ray diffraction and x-ray imaging, Mater. Sci. Eng. A, vol.524, pp.69-76, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00423791

M. Herbig, 3D short fatigue crack investigation in beta titanium alloys using phase and diffraction contrast tomography, 2011.
URL : https://hal.archives-ouvertes.fr/tel-00690521

M. Herbig, 3D growth of a short fatigue crack within a polycrystalline microstructure studied using combined diffraction and phase-contrast x-ray tomography Acta Mater, vol.59, pp.590-601, 2011.

H. Proudhon, J. Li, F. Wang, A. Roos, C. V. Forest et al., 3D simulation of short fatigue crack propagation by finite element crystal plasticity and remeshing, Int. J. Fatigue, vol.82, pp.238-284, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01237651

J. Li, H. Proudhon, A. Roos, C. V. Forest, and S. , Crystal plasticity finite element simulation of crack growth in single crystals, Comput. Mater. Sci, vol.94, pp.191-198, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01078756

J. Buffiere, E. Ferrie, H. Proudhon, and W. Ludwig, Three-dimensional visualisation of fatigue cracks in metals using high resolution synchrotron x-ray micro-tomography, Mater. Sci. Technol, vol.22, pp.1019-1043, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00436195

V. Vitek, Intrinsic stacking faults in body-centred cubic crystals Phil. Mag, vol.18, pp.773-86, 1968.

R. Lebensohn, A. Kanjarla, and P. Eisenlohr, An elasto-viscoplastic formulation based on fast fourier transforms for the prediction of micromechanical fields in polycrystalline materials, Int. J. Plast, pp.59-69, 2012.

H. Moulinec and P. Suquet, A fast numerical method for computing the linear and nonlinear mechanical properties of composites, C. R. Acad. Des. Sci. II, vol.318, pp.1417-1440, 1994.

S. Harren, T. Lowe, R. Asaro, and A. Needleman, Analysis of large-strain shear in ratedependent face-centred cubic polycrystals: correlation of micro-and macromechanics Phil, Trans. R. Soc. A, vol.328, pp.443-500, 1989.

G. Martin, Numerical multiscale simulation of the mechanical behavior of beta-metastable titanium alloys Ti5553 and Ti17 Thesis Ecole Nationale Supérieure des Mines de Paris https:// pastel, 2012.

M. Groeber and J. , 3D: a digital representation environment for the analysis of microstructure in 3D Integr, Mater. Manuf. Innov, vol.3, pp.1-17, 2014.

A. Rovinelli, H. Proudhon, R. Lebensohn, and M. Sangid, Assessing the reliability of FFTbased crystal plasticity simulations of a cracked polycrystalline material, 2017.

S. Fréour, E. Lacoste, M. François, and R. Guillén, Determining Ti-17 ?-phase single-crystal elasticity constants through x-ray diffraction and inverse scale transition model Mater, Sci. Forum, vol.681, pp.97-102, 2011.

A. Korsunsky, D. Dini, F. Dunne, and M. Walsh, Comparative assessment of dissipated energy and other fatigue criteria, Int. J. Fatigue, vol.29, pp.1990-1995, 2007.

J. Hochhalter, A geometric approach to modeling microstructurally small fatigue crack formation: II. Physically based modeling of microstructure-dependent slip localization and actuation of the crack nucleation mechanism in AA 7075-T651 Model Simul, Mater. Sci. Eng, vol.18, p.45004, 2010.

A. Dulmage and N. Mendelsohn, Coverings of bipartite graphs Can, J. Math, vol.10, pp.516-550, 1958.

S. Sankararaman, L. Y. Mahadevan, and S. , Uncertainty quantification and model validation of fatigue crack growth prediction Eng, Fract. Mech, vol.78, pp.1487-504, 2011.

K. Pearson, Note on regression and inheritance in the case of two parents, Proc. R. Soc. London, vol.58, pp.240-242, 1895.

C. Shannon and W. Weaver, The Mathematical Theory of Information, 1949.

S. Kullback and R. Leibler, On information and sufficiency Ann, Math. Stat, vol.22, pp.79-86, 1951.

C. Correa and P. Lindstrom, The mutual information diagram for uncertainty visualization, Int. J. Uncertain. Quantif, vol.3, pp.187-201, 2013.

F. Jensen, B. Chamberlain, T. Nordahl, and F. Jensen, HUGIN of data conflict Proc. 6th Annual Conf. on Uncertainty in Artificial Intelligence pp, pp.519-547, 1990.