Observers for a non-Lipschitz triangular form
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Abstract

We address the problem of designing an observer for triangular non locally Lipschitz dynamical systems. We show the
convergence with an arbitrary small error of the classical high gain observer in presence of nonlinearities verifying some Hoélder-
like condition. Also, for the case when this Hoélder condition is not verified, we propose a novel cascaded high gain observer.
Under slightly more restrictive assumptions, we prove the convergence of an homogeneous observer and of its cascaded version

with the help of an explicit Lyapunov function.
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1 Introduction

A preliminary step is often required in the construction
of observers for controlled nonlinear systems. It con-
sists in finding a reversible coordinate transformation,
allowing us to rewrite the system dynamics in a target
form more favorable for writing and/or analyzing the
observer. For example, the dynamics of a controlled sin-
gle output system of dimension n which is uniformly ob-
servable (see [12, Definition 1.2.1.2]) and differentially
observable of order m (see [I2, Definition 1.2.4.2]) with
m = n can be written with appropriate coordinates in
a Lipschitz triangular form appropriate for the design
of a high gain observer ([I0, [I1]). Such a property is no
more true when the order m is strictly larger than the
dimension n. Indeed in this case, we may still get the
usual triangular form but with functions that may not
be Lipschitz ([6]). A particular case of this is when there
is only one nonlinear function (in the last line for the
single output case). This is the so-called phase-variable
form. It has been known for a long time, in particular in
the context of dirty-derivatives and output differentia-
tion, that a high gain observer can provide an arbitrary
small error as long as the nonlinearity is bounded ([26]
among many others). We also know since [14] that a slid-
ing mode observer can achieve finite-time convergence
under the same assumption. In this paper, we want to
build observers for the more general triangular canon-
ical form where non-Lipschitz triangular nonlinearities
can appear on any line. As far as we know, this form has
not received much attention apart from its well-known
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Lipschitz version and the convergence results holding for
the phase-variable form do not extend trivially.

This paper follows and completes [5]. We show here
that the classical high gain observer may still be used
when the nonlinearities verify some Hélder-type condi-
tion. Nevertheless, the asymptotic convergence is lost
and only a convergence with an arbitrary small error
remains. When the nonlinearities do not verify the re-
quired Holder regularity, it is also possible to use a cas-
cade of high gain observers, but once again, the conver-
gence is only with an arbitrary small error.

Fortunately, moving to a generalization of high gain
observer exploiting homogeneity makes it possible to
achieve convergence. It is at the beginning of the cen-
tury that researchers started to consider homogeneous
observers with various motivations: exact differentiators
([I4, 15, [16]), domination as a tool for designing stabi-
lizing output feedback ([27], [20], [21], [3] and references
therein (in particular [1])), ... The advantage of this type
of observers is their ability to face Holder nonlinearities.

With the tools introduced in [2], we have at our disposal
a Lyapunov design to obtain an homogeneous observer
with degree in | — 1, 0] for the triangular form mentioned
above. By construction, convergence is guaranteed if the
nonlinearities verify a Holder-type condition. We show
here that the same Lyapunov design can be extended to
the case where the degree of homogeneity is —1. This is
interesting since the constraints on the nonlinearities be-
come less and less restrictive when the degree gets closer
to —1. It turns out that, in the absence of nonlineari-
ties, the observer we obtain is actually the exact differ-
entiator presented in [I4] and which is defined by an ho-
mogeneous differential inclusion. But as opposed to [14]
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where convergence is established via a solution-based
analysis, in our case, convergence is again guaranteed
by construction since the design gives also a homoge-
neous strict Lyapunov function. Moreover this function
enables us to quantify the effect of the observer param-
eters on the behavior in presence of Hoélder nonlinear-
ities and disturbances. Of course, knowing the conver-
gence of the exact differentiator from [14], we could have
deduced the existence of such a Lyapunov function via
a converse theorem as in [I§]. But with only existence,
effect quantifications as mentioned above is nearly im-
possible. Actually many efforts have been made to get
expressions for Lyapunov functions but, as opposed to
Lyapunov design, Lyapunov analysis is much harder. As
far as we know, expressions of Lyapunov functions have
been obtained this way only for m < 3. See [19].

Finally, to face the unfortunate situation where the non-
linearities verify none of the above mentioned Holder
type conditions, we propose a novel observer made of a
cascade of homogeneous observers whose maximal total

dimension is w We prove that it converges without
requiring anything on the nonlinearities (except conti-

nuity) in the case where the system trajectories and the
input are bounded.

All along our paper, we sometimes use stronger assump-
tions than necessary in order to simplify the presenta-
tion of our results. We signal them to the reader with

a 3t symbol as in “the trajectories are complete{} 7. We
discuss how they can be relaxed later in Section 7, in par-
ticular when we restrict our attention to compact sets.

Notations
(1) We define the signed power function as

la]” = sign(a) |a|",

where b is a nonnegative real number. In the partic-
ular case where b = 0, |a]” is actually any number

in the set
{1} ifa>0,
S(a) =4 [-1,1] ifa=0, (1)
{-1} ifa<0.

Namely, writing ¢ = |a]® means ¢ € S(a). Note
that the set valued map a — S(a) is upper semi-
continuous with nonempty, compact and convex

values. R R R R
(2) For (21, coyzi)and (21,..., %) (vesp. (Zi1, .-, 2i))
in R*, we denote
Z; = (21,...,Zi)
21‘ = (?:‘1,...,7:’2') (resp. 22 = (2117,2“))

€ij = Zij — 25, ej:zj—zj,ei:zi—zi.

2 Continuous triangular form

Consider a nonlinear system of the form

2 =204+ P1(u,21) +wy
2 Zi) + w;

% = zig1 + @i(u, 21, . ..

y=z+v

where z is the state in R y is a measured output in R,
® is a continuous function which is not assumed to be
locally Lipschitz. w can model either a known or an un-
known disturbance on the dynamics and v is an unknown
disturbance on the measurement. Given locally bounded
measurable time functions ¢ — u(t) and t — w(t), we de-
note Z(z, t; u, w) asolution of (2) going through z at time
0 which, to simplify the presentation, is assumed to be

defined for all ¢ > 0 (i.e. the trajectories are complete{}).

We are interested in estimating Z(z,t;u, w) knowing y
and u.

As mentioned in the introduction, this kind of triangular
continuous form, as we call (2), appears when we con-
sider systems which are uniformly observable and dif-
ferentially observable but with an order larger than the
system’s dimension. An example is given in Section 8.

The only existing observer we are aware of able to cope
with ® no more than continuous is the one presented in
[]. Its dynamics are described by a differential inclusion
(see Appendix A) :

éEF(é,y,u)

where (2,y,u) — F(Z,y,u) is a set valued map. In the
disturbance free context (i.e. v = w; = 0), it can be
shown that any absolutely continuous solution gives in
finite time an estimate of z under the only assumption of
boundedness of the input and of the state trajectory. But
the set valued map F' above does not satisfy the usual
basic assumptions (upper semi-continuous with compact
and convex values) (see [9, 22]). It follows that we are
not guaranteed of the existence of absolutely continu-
ous solutions nor of possible sequential compactness of
such solutions and therefore of possibilities of approx-
imations of F'. That is why, in this paper, we look for
other candidate observers for the triangular form (2).

In doing so, we might have to restrict the possible non-
linearities allowed to obtain the existence of an observer.
The restriction we will impose can be described as fol-

lows. For a positive real number a, and a vector « in
m(m+1)

[0,1] 7 =, we will say that the function ® verifies the
property P(a,a) if :

Property P(a, a){} : Foralliin{1,...,m}, forallz;,



and zg in R™ and u in U, we havdT] :

i
| (1, Zia) — Pi(u, zip)| < OZ |zja — 2jb

j=1

L)

This property captures many possible contexts. In the
case in which «a;; > 0, it implies that the function ®
is Holder with power a;;. When the «o;; = 0, it simply
implies that the function ® is bounded. In the following,
0}11" aim is to design an observer depending on the values
of a.

It is possible to employ the degree of freedom given in
(2) by the time functions w to deal with the case in
which the given function ®(u, z) doesn’t satisty P(a, «).
In this case, an approximation procedure can be carried
out to get a function ® satisfying P(a,a) and selecting

w = ®(u, z) — P(u, z) which is an unknown disturbance.
The quality of the estimates obtained from the observer
will then depend on the quality of the approximation (i-
e the norm of w). This is what is done for example in [I7]
when dealing with locally Lipschitz approximations. We
will further discuss in Section 7 how to relax assumption

P(a, ).

In Section 3, we start by showing the convergence with
an arbitrary small error of the classical high gain ob-
server when the nonlinearity ® verifies the property P
for certain values of o;;. We deduce in Section 4 the con-
vergence with an arbitrary small error for a cascaded
high gain observer when the input and the state trajec-
tories are bounded. On an other hand, in Section 5, we
show that replacing the high gain structure by an homo-
geneous structure enables to obtain convergence under a
slightly more restrictive Holder restriction. Then, a cas-
caded homogeneous observer is presented in Section 6,
which ensures asymptotic convergence when the input
and the state trajectories are bounded. As already men-
tioned, in Section 7, we indicate how the assumptions,

marked with ¥ in the text, can be relaxed. Finally, we
illustrate our observers with an example in Section 8.

3 High gain observer

We consider in this section a classical high gain observer:

z1 = 722 +®1(U,21)+ﬁ)1 7Ll€1 (7:’1 7y)

2o = 3+ ®olu, 21, ) + by — L2 ko (51 — y) )

Zm = O (u, 2) + W — L™k, (31 — y)

where L and the k;’s are gains to be tuned, y is the
measurement. The w; are approximations of the w;. In
particular, when w; represents unknown disturbances,

1 Actually ®; can depend also on z;41 to zm as long as (3)
holds. It can also depend on time requiring some uniform
property (see Section 7).

the corresponding w; is simply taken equal to 0. In the
following, we denote

Aw=w—w.

When @ satisfies the property P(a, a) with a;; = 1 for
all 1 < j <4 < m, we recognize the usual triangular Lip-
schitz property for which the nominal high-gain observer
gives an input to state stability (ISS) property with re-
spect to the measurement disturbance v and dynamics
disturbance w. It is well known that the ISS gain be-
tween the disturbance and the estimation error depends
on the high-gain parameter L. Specifically, we have the
following well known result. See for instance [13] for a
proof.

Proposition 1 (Nominal high-gain) There exist
real numbers ki,...,kn, L*, A\, B and vy such that,

a) for all functions ® satisfying{} for alli and for all z;,
and z;, in R™

|3, Zia) — P, 2a0)| < @Y |zja — 2| + b; (5)
j=1
b) for all L > max{aL*,1},
¢) for all locally bounded time function (u,v,w,w), all
(2,2) in R™ x R™,

any solution 2(2, z,t;u, v, w, W) of (4) verifies, for alltg
and t such thatt > to > 0, and for alli in {1,...,m},

Z:(t) - Z:())| (6)

< max {Lilﬁ ‘Zi(to) — Zi(tg))| e Mltto)

. i—1 |ij(5)| +b;
7Y sup {L |U(5)|’W .

1<j<m
s€ltost]

where we have used the abbreviation Z(t) = Z(z,t; u, w)
and Z(t) = Z(z, 2, t;u, v, w, ).

Since the nominal high-gain observer gives asymptotic
convergence for Lipschitz nonlinearities, we may won-
der what type of property is preserved when the non-
linearities are only Holder. In the following proposition,
we show that the usual high-gain observer can provide
an arbitrary small error on the estimate providing the
Holder orders ay; satisfy the restrictions given in Table

1 or Equation (7).

Proposition 2 Assume the function ® verifies P, a)
for some (a, a) in [0,1] gt

J <t

x Ry satisfying, for 1 <

LH<aij§1 for i=1...

m—1

Ogam,jgl

7m_17

(7)

Then, there exist real numbers ky, . .., ky,, such that, for
all € > 0 we can find positive real numbers X\, B, v, and



j 1 2 oo o m—2 m-—1 m

1

m—2
1 m—1
9 m—3 m—3

m—2 m—2

Q5 > .
1 1 1

m=—2 2 2 2
m—1 0 0 .. 0

Table 1 : Holder restrictions on ® for arbitrarily small
errors with a high gain observer.

L* such that, for all L > L*, for all locally bounded
time function (u, v, w,w) and all (z,2) in R™ x R™, any
solution Z (%, z, t;u, v, w, ) of (4) verifies, for all ty and
t such thatt > to > 0, and for alli in {1,...,m},

|20 - zw))

< max{ e, L' ‘Zi(to) - Zi(to))‘ e A(t—to)

vsm>{L“ww@Lfﬁifﬁ}}

1<i<m
s€([to,t]

where we have used the abbreviation Z(t) = Z(z,t; u, w)
and Z(t) = Z(z, 2, t; u, v, w, ).

Comparing this inequality with (6), we have now the
arbitrarily small non zero € in the right hand side but
this is obtained under the Hoélder condition instead of
the Lipschitz one.

PROOF. With Young’s inequality, we obtain from (3)
that, for all o;; in Ry and all Z and z in R™

|®i(u, ) — Bi(u,z:)| < Y aijl2 — 2] +bij, (8)

j=1
with a;; and b;; defined as
a; =0, bjy=a, ifozij:O
1 % 11—y .
a;; = aci OéijO'Z-j” s bij = — if0 < a5 < 1
b 1—ayj
..
ij
aij:a,bij:O ifOéZ‘jZI

(9)

With (8), the assumptions of Proposition 1 are satisfied
with b; = Y% byj. It gives ki,..., km, L*, A, B and v

j=1
and, if L > max;>; {a;;L*, 1}, the solution satisfies the
ISS inequality (6). The result will follow if there exist L
and o;; such that

)

j
L L1 LIl < e (1
> I?za;({a” 1}, n}ajxé;vbﬂL <e. (10)

At this point, we have to work with the expressions of
a;; and bj, given in (9). From (7), c;; can be zero only
if i = m. And, when a,,,¢ = 0, we get

,ymeLi—m—l — ’YﬂLi_m_l S %a
Say that we pick o,,¢ = 1 in this case. For all the other
cases, we choose

97 ] 1—aje

to obtain from (9)

- 1 1
—j—1
Vo5l S esom

So, with this selection of the o, the right inequality in
(10) is satisfied for L sufficiently large. Then, according
to (9), the a;; are independent of L or proportional to

. 1—ayy
L7755 But with (7) we have
1— o
0<(m—i-1)—24 1
Qg

This implies that ai'j tends to 0 as L tends to +o00. We
conclude that (10) holds if we pick L sufficiently large.

It is interesting to remark the weakness of the assump-
tions imposed on the last two components of the func-
tion ®. Indeed, (7) only imposes that ®,,_; be Holder
without any restriction on the order, and that ®,, be

boundedf}.

4 Cascaded high gain observer

According to Proposition 2, the classical high gain ob-
server can provide an arbitrary small error when the last
nonlinearity is only bounded and when there is no dis-
turbance. We exploit here this observation by propos-
ing the following cascaded high gain observer to deal
with the case where the functions ®; do not satisfy (7):

211 = W1 — Li ki (211 — 21)

91 = Zog + @y (u, 211) 4+ 01 — Lo ka1 (301 — 21)

29y = Wy — L3 koo (321 — 21)

Zm1 = Zma + 1(U, Zm_1)1) + W1 — Lin k1 (Bm1 — 21)
Zm2 = Zm3 + P2, Z(m—1)1, Z(m—1)2)

+g — Lgn ka (éml - Zl)

émm = wm - Lry;z kmm (éml - Zl) (11)

with the gain k;; chosen as in a classical high gain ob-



server of dimension 4, w; are estimations of w; and L;
are the high gains parameters to be chosen.

Assuming the input function and the system solution
are bounded, it is shown in the following that estimation
with an arbitrary small error can be achieved by the
cascaded high-gain observer.

Proposition 3 Assume ® is continuous. For any pos-
itive real numbers z and T, for any strictly positive real
number e, there exist a choice of (L1, ..., Ly,), a class KL
function B and two class Ko, functions ~v1 and 7o such
that, for all locally bounded time function (u,v,w,w),
for all (z,%2) in R™ x R™ and for all t such that
|Z (2, s;u,w)| < Zand |u(s)] < T forall0 < s < t, any

solution (21(2, 2, 65U, U, W, W), ..y Zm(,é'7 z,tu, v, w, 11)))
of (11) verifies, for alli in {1,...,m},

Zi(t) -z,
<maxqe, B (D 12—zt |,

j=1
sup {Wl(v(S)I)m(IAw(S))}}
s€0,t]

where Z; is the state of the ith block (see Nota-

tion 2) and we have used the abbreviation Z;(t) =

Z;(2, z, t;u,v,w, ) and Zi(t) = Zi(z,t;u, w).

PROOF. This result is nothing but a straightforward
consequence of the fact that a cascade of ISS systems is
ISS.

Specifically the error system attached to the high gain
observer in block i has state e; (see Notation 2) and
input v and §;; defined as

0ij = [®;(u, 2-1)) — P (u, 2-1))] + [0 — wy]
6ii = —zit1 — Piu,2;) + Wi —w;

with 2,41 = 0. With Proposition 1, we have the exis-
tence of kj1,..., ki, A, B; and ~y; such that we have, for
all L; > 1,allt > t; > 0, all jin {1,...,4} and with
e;;(t) denoting the jth error in the ith block evaluated
along the solution at time ¢,

i (1))
< max L{‘lﬁi le; (t:)] e~ NLi(t=t)

i die(s)]
; Su LI u(s)], 19: . .
K 1§e£j { ! o)l LffJJrl

ES [ti ,t]

But the continuity of the ®; implies the existence of a
functiorE p of class K such that, for all j in {1,...,m}

* Simply take p(s) = MAaX|,| <1, |z,|<Z,|e|<s |Pi (U, 25 + €) —
®;(u,z;)|-

and for all (z(;_1),Z(;—1),u) in R~ x R*~! x U satisfy-
ing |z(;—1)| <Zand |u| <,

@ (u, 2(i—1)) — ®;(u,2(-1))| < p (lea—p)) -
This implies

[ic(s)] < pllei-1(s)]) + [Awe(s)], £=1,...
6 (8)] < Zit1 + Pi + [Awi(s)] ,

ajilv

where ¢; = MaX |, T |z | <z |®;(u,z;)|. Hence, we have
the existence of ¢; independent of L; such that

lei(t)]

< ¢; max L;:*l lei(t:)] e~ Nililt=t) sup Lz:*l [v(s)],

SE[ti,t]
i— A z; ;
p Aot Jdwe)] Fa 4]
seltit] L 1<e<i L L;

sE[t;,t]

This makes precise what we wrote above that we have a
cascade of ISS systems. Hence (see [23 Prop. 7.2]), for

each i in {1,...,m}, there exist a class KL function ;
and class /C functions +,; and 7,,;, each depending on I,
to L; and such that we have, for all ¢ > 0,

es(t)] < max{ﬁi (nox UesOt) |

wi, Sup {%i(lv(S)l),%n(lAw(S)l)}} :

s€0,t]

where w; is a positive real number defined by the se-
quences

Zig1 + P p(wi1)
, W = ¢ max{ L :

Then by picking L; > L} where L} is defined recursively

as :
_ _ : —1 €it1
€m =€, € =N (ap ( _ lLi—Qei-‘rl))
Cit1hy1

L — cm®Pm L= Ci[2i+1‘+ b,
Em i

we obtain w; < e for all 7, hence the result.

This observer has the advantage of working without any
assumption on the nonlinearities besides their continu-
ity. Note however that it requires the knowledge of a
bound on the system solution and on the input. Also
we may not need to build m blocks, since according to
Proposition 2, we need to create a new block only for the
indexes 7 where ®; does not verify Property P(«, a) for
any a > 0 and with « satisfying (7). Unfortunately, as
it appears from the proof of Proposition 3, the choice of



(L1, ..., L) can be complicated. Besides, only a conver-
gence with an arbitrary small error is obtained. It may
thus be necessary to take very high gains which is prob-
lematic in terms of peaking and most importantly in
presence of noise (see Section 8). In the following two sec-
tions, we move our attention to homogeneous observers,
and show that they enable to obtain convergence.

5 Homogeneous observer

Homogeneous observers are extensions of high gain ob-
servers able to cope with some non Lipschitz functions.
As mentioned in the introduction, they already have an
old history (see [14], [T3], 7], [T6], 20}, BT, 11, B2, ()

). In our context they take the form :

r2

zZ1 = ,22-’-@1(’&,2?1,15)"‘12)1 _Lkl |_21 _y.l T'l
ry
Zy = 234 ®a(u, 21, 2o, t) + o — LP ky |21 —y] ™

Tm+1

*L km Lélfy] 1

2 = B, 2,t) +

(12)

where 7 is a vector in R™T1, called weight vector, the
components of which, called weights, are defined by

’I“izl—do(m—i) 5 (13)

and where L and the k;’s are gains to be tuned, dgy is
a parameter to be chosen in [—1,0]. We refer to Nota-
tion (1) for the case dy = —1, for which the dynam-
ics (12) must be understood as a differential inclusion.
When dy = 0, we recover the high-gain observer stud-
ied in Section 3. As mentioned in Proposition 2, the
usual high-gain observer can provide an estimation with
an arbitrary small error provided the nonlinearity sat-
isfies the property P(«, a) with the o;; verifying (7). In
the following proposition we claim that asymptotic es-
timation may be obtained with homogeneous correction
terms and when considering nonlinearities which satis-
fies P(c, a) with the a;; verifying

Ozijzl do(m —1 ‘1) _ Tig 1<j<i<m
1 —do(m —j) 5
(14)
Those conditions in the extreme case where dy = —1

are summed up in Table 2. On top of that, finite time
estimation may be obtained.

Proposition 4 Assume that there existdy in[—1,0] and
a in Ry such that @ satisfies P(«, a) with « verifying
(14){}. There exist (ki, ..., km), such that for all @, > 0
there exist L* > 1 and a positive constant -y such that, for

all L > L* there exists a class KL function B such that
for all locally bounded time function (u,v,w,w), and all
(2,2) in R™ x R™ system (12) admits absolutely contin-
uous solutions Z(Z, z, t; u, v, w,w) defined on R, and for
any such solution the following implications hold for all
tg and t such thatt >ty > 0, and for alli in {1,...,m} :
Ifdg > —1:

j 1 2 oo m—2 m—-1 m
1
1 m—1
9 m—2 m—2
m m—1
Q5 = : .
s 2 2 2
m m m—1 3
L 1 1 1
m— m m—1 2
m 0 0

Table 2 : Holder restrictions on ® for a homogeneous
observer with dg = —1

|Zit) = Zu()] < maX{ B(1Z(to) — Z(to)l,t — to) , (15)
gMM@WL}}
’ Lt
where pii; = (j—i+1) =

tion Z(t) = Z(z,t,u,w) andZ( )= Z(
t

v sup {U—1 lv(s)
1<5<i
s€[to,t]

2t u, v, w, W),
=0 forallt and

z,t) = Z(z,1)

Moreover, when dy < 0 andv(t) = w;(

j=1,...,m, there exists T such that Z
forallt > T.

)
(2,

Ifdy = —1 and | Awy, (t)| < @y, -

|Zs(t) = Zi(1)] <maX{ (12 (to) = Z(to)l,t — to) , (16)
T XL i
2, {2t B
s€E(to,t]

where pi;, Z(t) and Z(t) are defined above.

Moreover, when v(t) = w;(t) = 0 for all t and j =
1,...,m, there exists T such that Z(t) = Z(t) for all
t>1T.

Note that j is in {1,...,
{1,...,i— 1} in (16).

i} in (15) whereas it is in

The proof of Proposition 4 for the case dy €] — 1, 0] and
without disturbances is given for example in [2]. Actu-
ally [2] gives a Lyapunov design of the observer (12) with
a recursive construction of both Lyapunov function and
observer. Here we are concerned with the case dy = —1.
In this limit case, the observer (12) is a differential in-
clusion corresponding to the exact differentiator studied
in [14], where convergence is established in the particu-
lar case in which ®; =0for j=1,...,m — 1 and ®,, is
bounded. We prove in Proposition 6 that the Lyapunov
design of [2] can be extended to this case. This allows us
to show that the observer (12) still converges if, for each
i, ®; is Holder with order a;; equal to the values given
in Table 2, where i is the index of ®; and j is the index
of e;. We also recover the same bound in presence of a

noise v as the one given in [I4].



Actually some effort has been devoted to Lyapunov anal-
ysis for establishing the convergence of the observer pro-
posed in [I4]. But, as far as we are aware of, this more
([iiﬂjlcult route has been successful for m < 3 only. See
19].

Finally, it is interesting to remark that in the case dy =
—1 the ISS property between the disturbance w,, and
the estimation error is with restrictions as defined in [25]
Definition 3.1]. If |Awy, (¢)| < @, and L is chosen suffi-
ciently large, then asymptotic convergence is obtained.
However, nothing can be said when |Aw,,| > @,,. More-
over, it may be possible for a bounded large disturbance
to induce a norm of the estimation error which goes to
infinity. We believe that this problem could be solved
employing homogeneous in the bi-limit observer as in
[2]. It is shown to be doable in dimension 2 in [§].

PROOF. The set-valued function ey — |e1]° defined
in Notations 1 is upper semi-continuous and has convex
and compact values. Thus, according to [9], there exist
absolutely continuous solutions to (12).

Let £ = diag(1, L, ..., L™!). The error ¢ = 2 — z pro-
duced by the observer (12) satisfies

¢ € LSpe+d+ LLA(ey +v) (17)
where ), is the shifting matrix of order m,
0=P(u,2)+w—P(u,z) —w,

and R is the homogeneous correction term the compo-
nents of which are defined as

Tit1l

(R(e1))i = ki lea] ™

where (ki,...,k,) are positive real number and r; is
defined in (13).

Let also V' : R™ — R be the function defined as

m-1 e dy —r; dy —ry

Vie) = Z/ n [m = 8] T | de
i—1 7 [&ig1] TitT

[em|?v

+ g

(18)

where dy and ¢; are positive real numbers such that dy >
2m — 1. Note that V is a homogeneous function with
weight vector r. It is nothing but the one proposed in [2]
Theorem 3.1] for designing an observer homogeneous in
the bi-limit with dy in ] — 1, 0]. There it is shown that, by
appropriately selecting the parameters ¢; and k;, V is a

strict C!' Lyapunov function homogeneous of degree dy
for the L-independent auxiliary system with state € :

€ € Spme+ R(er) . (19)

With this result in hand a robustness analysis can be
carried out on a system of the form (17). In fact, the
same approach can be followed for the case dg = —1 and
the following technical result is proved in Appendix B.

Lemma 1 For all dy in [—1,0], the function V defined

in (18) is positive definite and there exist positive real

numbers ki, ... ky, £1,... 4m, A, c5 and ¢, such that for

Z”lfl mR™, § inR™ and v in R the following implication
olds :

1

if 18] < csV(©) ™, Vi, and [o] < V(@) then?]

dy +do

max{aa‘e/(é)(Sm(é) +5+ Rer + 17))} < -AV(e) v,

This Lemma says V is a ISS Lyapunov function for the
auxiliary system (19). See [24] Proof of Lemma 2.14]
for instance. Consider now the scaled error coordinates
e = L71(2—2). Straightforward computations from (17)
give the error system

1
ZéESm{:“—FDL—Fﬁ(El—FU)

with Dy, = £716. Since ® satisfies P(a, a), with (14) and
Tl <1, we obtain, for all L > 1
J

i
a G- i1 DL [Awy
|DU|§ZZL E lejl 7+ Lil :
i=1

IN

0o 1| Awl
Z;|6j| BT

Tit1 Aw;
< fvi® ol

where ¢ is a positive real number obtained from Lemma

3 in Appendix D. With Lemma 1, where 0; plays the
role of Dy, ;, ¥ the role of v and e the role of €, we obtain

that, by picking L* sufficiently large such that ;5 < %,
we have, for all L > L*,

|Awl| Cs % i
it L =g @ (20)
] < e, V()™
1 oV ay +a
= Z max {86(5)5} S _)\V(E) ‘;V .

Now, when evaluated along a solution, € gives rise to
an absolutely continuous function ¢ — £(t). Similarly
the function defined by ¢ — v(t) = V((t)) is absolutely
continuous. It follows that its time derivative is defined
for almost all ¢ and, according to [22, p174], (20) im-
plies, for almost all ¢,

3 Here the max is with respect to s in [&1 + 17)]0 appearing

in the mth component R(€; + ¥).m of R(é1 + 7).



\Awl| Cs Tit1 .
- < — d
il i SV

ol < eor(t)V

Here two cases have to be distinguished.
(1) If dp is in ] — 1,0], with Lemma 5 in Appendix D

(see also [24]), we get the existence of a class KL
function By such thaf¥]

V(e(t)) < max {Bv(V(ﬁ(O)),ALt),

1€[1,m]

d d
sup <4Awi<s>|)w¥1 [o(s)] ™
s€[0,t] Licé ’ Cy .

The result holds since with Lemma 3 there exist a
positive real number ¢; such that

i

‘ < V(ie)w .

€
‘Liq
Moreover, when v(t) = Aw;(t) = b; = 0 for

j=1,...,m, (21) implies finite time convergence
in the case in which dy < 0.

(2) If dy = —1, then 7,11 = 0. We choose L* suffi-
ciently large to satisfy

W

(Lx)m

C
<2,
4

We obtain that the first condition in (21) is satis-
fied for i = m when L > L*. With Lemma 5 in
Appendix D (see also [24]), the implication (21) im-

plies the existence of a class KL function fy such
that 4

V(e(t)) < max

{Bv(V(E(O)% ALt),

T ig[l,m—1]
d d
<4Awi<s>|)w¥1 Jo(s)| ™
sup _— , ———— .
s€[0,t] Lics Ca

And the result holds as in the previous case.

6 Cascade of homogeneous observers

When we cannot find dp in [-1,0] and a such that the
nonlinearities satisfy P(a, a), with « defined in (14), we

may lose the convergence of observer (12), or the possi-
bility of making the final error arbitrarily small. In such a
bad case, we can still take advantage of the fact that, for

—do v
* according to Lemma 5, By (s,t) = max{0,s 9v —t}=do

a verifying (14) with do = —1, P(«, a) does not impose
any restriction besides boundedness of the last functions
®,,, (see Table 2).

From the remark that observer (12)

(1) can be used for the system

21 = 2o+ 1(t)

Zp—1 = 2k + Yr-1(t)
Zp = ¢r(t)
provided the functions ; are known and the func-

tion ¢ is unknown but bounded, with known
bound.

(2) gives estimates of the z;’s in finite time,

we see that it can be used as a preliminary step to deal
with the system

Z1 = 2o+ d)l(t)

2+ Pr—1(t)

Zk+1 t @k(u,zl, .. ~;Zk)

Zp—1

Zr

Zer1 = Pr1(Uy 2150005 Zk41)

Indeed, thanks to the above observer we know in fi-
nite time the values of zq,..., zx, so that the function
Dy (u, 21, ..., 2,) becomes a known signal ().

From this, we can propose the following observer made
of a cascade of homogeneous observers :

211 € wy; — L1 k11 S(211 - y)

%’21 = 299 + ®1(u, 211) + W1 — Lo ko1 [221 — y]?
Zog € Wa — L3 koo S(201 — y)

Zm1 = Zma + ®1(u, 211)

-

m—

+w1 - Lm kml |_2m1 - Zﬂ m

ém(m—l) = Zmm + (I)mfl(uu 73(m—1)17 ) 2(m—1)(m—1))
) F W1 — Lﬁil km(nL—l) Léml - yw
Zmm € Wy — L% Emm S(éml - y)

3

(22)
where the k;; and L; are positive real numbers to be
tuned.

As a direct consequence of Proposition 4 and following
the same steps as in the proof of Proposition 3, we have



Proposition 5 Assume ® is continuous. For any posi-
tive real numbers z, U w, we can find positive real num-
bers ki; and L;, two class KC functions y1 and 2 and a
class KL function B such that, for all locally bounded
time function (u,v,w,w), and all (z,2) in R™ x R™,
the observer (22) admits absolutely continuous solutions

which

are defined on Ry and for any such solution we have for
alli in{1,...,m} and for allt such that|Z(z, s;u,w)| < Z,
lu(s)| < T and |Aw(s)| < W for all0 < s < ¢:

12i(t) - Z()] < max {(|z — 2], 1),
sup {7 (o(s)]), 2(1Aw; (5))} }.

1<j<i—1
s€(to,t]

~ ~

(Zl(éa z,t;u, v,w,ﬁ/), ) Zm(év z,t; U,U,U},’LZ)))

where Z; is the state of the ith block (see Nota-
tion 2) and we have used the abbreviation Z;(t) =

Z:(3, 2, t;u, v, w,0) and Zi(t) = Z;(z,t;u,w).
Moreover, when v(t) = Aw; = 0, there exists T such

that Zy(2, z,t) = Zs(z,t) for allt > T.

This observer is an extension of the cascaded high gain
observer (11) presented in Section 4. The use of homo-
geneity enables here to obtain convergence without de-
manding anything but the knowledge of a bound on the
input and on the system solution. A drawback of a cas-
cade of observers is that it gives an observer with dimen-
sion W in general. However, as seen in Section 4, it
may be possible to reduce this dimension since, for each
new block, one may increase the dimension by more than
one, when the corresponding added functions ®; satisfy
P(a,a) m for some o verifying (14) with dy = —1 and
for some a.

Finally, note that the result of Proposition 5 does not
mean that the observer is ISS with respect to Aw. In-
deed, Aw must be bounded to obtain this ISS-like in-
equality : the system is ISS with restrictions. Again, we
believe that this problem could be solved employing ho-
mogeneous in the bi-limit observer as in [2].

7 Relaxing the assumptions marked with 3t

First, if System (2) is not complete, every ISS inequali-
ties still holds for any solution Z(z,t; u,w) but only on
[0,T(z)[ where T'(z) is its maximal time of existence.

The global aspect of boundedness, Hoder, P(«, a), ...,
can be relaxed as follows. Let U be bounded and let M
be a given compact set. We define @, to be used instead
of ® in the observers, as

D;(u, 21, ...y 2) = sat(®i(u, 21, ..., ), ;) (23)

where ®; = max,cy e m(P®i(u, 21, ..., 2;)) and the satu-
ration function is defined on R by

sat(z, M) = max(min(xz, M), —M) .

It can be shown that, for any compact set M strictly

contained in M, there exists a such that (3) holds for ®

for all (z,,2zp) in R™ x M. Then, since ® = ® on M, we

can modify the assumptions

- in Proposition 1, so that (5) holds only on the compact
set M,

- in Propositions 2 and 4, so that ® verifies P(«a, a) only
on the compact set M;

- Propositions 3 and 5 remain unchanged.

In this case, the results hold for the particular system
solutions Z(z, t; u, w) which are in the compact set M for
t in [0,7(z)[. Precisely, for these solutions, the bounds

on Z;(t) — Z;(t) given in these Propositions hold for all
tin [0,T(2)[.

Note also that if P(a,a) holds on a compact set, then
for any & such that &;; < oy  for all (4, 5), there exists
a such that P(&,a) also holds on this compact set. It

follows that the constraints given by (14) or Table 2
in Proposition 4 can be relaxed to a;; > %,
and the less restrictive conditions one may ask for are
obtained for dy = —1.

Finally, in Propositions 1, 2 and 4, it is possible to con-
sider the case where ® depends also on time as long as
any assumption made on @ is satisfied uniformly with
respect to time.

8 Example
Consider the system

iy =my, do = —wm1+aley, d3 = —ma2tu, Yy = a1

(24)
with u as input. It would lead us too far from the main
subject of this article to study here the solutions be-
havior of this system. We note however that, when u
is zero, they evolve in the 2-dimensional surface {z €
R3 : 323 + 323 + 25 = ®} which is diffeomorphid® | to
the sphere S?. Thanks to Poincaré-Bendixon theory, we
know the solutions are periodic and circling the unsta-
ble equilibria (21 = z2 = 0,23 = £c¢). So we hope for
the existence of solutions remaining in the compact set

Cre = {z€R’: af+af >, 307 + 323 +a§ <r}

for instance when u is a small periodic time function,
except maybe for pairs of input « and initial condition
(1,2, x3) for which resonance could occur. Moreover,
due to their periodic behavior, such solutions are likely
to have their 3 component recurrently crossing zero.

5 A diffeomorphism from the unit sphere to the set is z
xzp(x) where p is the unique positive solution (hint: z3 < 1)
x

of p%2§ + 3p°(1—23) — 1 =0



8.1 Uniform and differential observability

On S = {z € R*: 2} + 23 # 0}, and whatever v is, the
knowledge of the function ¢t — y(t) = X;(z,t) and there-
fore of its three first derivatives

Yy=1=xs3

.. 5

Yy=—x1+ 371

Y=—x9— 5z§x%x2 + Igl’g + 5z§x1u

gives us z1, 2 and x3. Thus, System (24) is uniformly
observable on S. Besides, the function

z
Z2
H4(£E> = _ 5

T+ 2327

—y — braxizy + w370

is injective on S and admits the left following inverse,
defined on {z € R*: 2§ + 23 # 0}, is:

21

z2

H,'(z) =
4 <Z) (Z3+21)21+{(Z4+Z2)+3\(Z3+21)[21]%|%22 22

2.2
27 +z5

However, Hy is not an immersion because of a singularity
of its Jacobian at x3 = 0. So the system is differentially
observable of order 4 on S but not strongly. According
to [6], it admits a triangular canonical form of dimension
4 but with functions ® maybe non Lipschitz.

8.2  Triangular form and property P(do, c,0)

The triangular canonical form of dimension 4 mentioned
above is

Z1 = 2o

Zo = 23

23 = 24 + ®3(u, 21, 22, 23) (25)
24 = Py(u, 2)

Yy = -

1

where ®3(u, 21, 29, 23) = bulzs + 21|§ |21]° and @4 is
a continuous non-Lipschitz function the expressions of
which is complex, fortunately with no interest here. The
function @3 is not Lipschitz at the points on the hyper-
planes z3 = —z and z; = 0 (image by Hj of points
where z3 = 0 or ;7 = 0) known to be visited possibly
recurrently along solutions. This example thus falls pre-
cisely into the scope of the paper.

The function ®4 is continuous and therefore bounded
on any compact set including Hy(C; ). Besides, for 23
and zg in a compact set including Hs(C, (), there exist

10
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Fig. 1. Trajectory of System (24), with the noised measure-
ment y.

c1 and c3 such that

‘@3(u,21,227,§3) - ®3(u721722723)| ) X
S clu|21 - Zl|g + 03U|23 — Z3 5.

This implies that ®3 is Holder with order %

Hence the nonlinearities ®3 and ®4 verify the conditions
of Table 1. This implies that for L sufficiently large, con-
vergence with an arbitrary small error can be achieved
with the high gain observer (4) . However, ®3 does not
verify the conditions of Table 2. Thus, there is no the-
oretical guarantee that the homogeneous observer (12)
with dy = —1 will provide exact convergence.

8.3 An observer of dimension 4 ¢

We consider the solution to system (24) with initial con-
dition z = (1,1,0) and u = 5sin(10¢). This solution is
periodic and regularly crosses the Lipschitzness singu-
larities 3 = 0 or &1 = 0, as illustrated in Figure 1. In
the following, we use the same noised measurement y,
shown on Figure 1, in every simulation with noise. It is a
filtered gaussian noise with standard deviation o = 0.03
and 1st order filtering parameter a = 50.

We first implement a high gain observer of dimension 4,
in the absence of noise, initialized at £ = (0.1,0.1,0),
and with the gains k1 = 14, ko = 99, k3 = 408, k4 = 833.
As an illustration of Proposition 2, the convergence with
an arbitrary small error is achieved and is illustrated in
Table 3. However, we observe that the decrease of the
errors, especially for e, 4, is very slow compared to the
increase of the peaking and a very high gain is needed
to obtain ”acceptable” final errors. In presence of noise,
the tradeoff between final error and noise amplification
becomes very difficult : with the noised measurement of
Figure 1, the smallest final error e, 4 is 200, achieved
for L = 2. Of course, there might exist a choice of the
gains k; giving better results. But overall a high gain
observer may not be a systematic solution in practice for



non-Lipschitz triangular systems, especially when the
solution regularly crosses the Lipschitz-singularities.

L €z,1 €z,2 €:3 | ez4 | Peaking

2 0.15 4 60 | 200 300

5| 6.107* 0.04 1.5 | 30 4000

8 | 5.107° | 4.107% | 0.25 1.5.10%

10| 8.107¢ | 1.107® | 0.1 3.5.10%

15| 1.5.107% | 3.107* | 0.03 | 2 | 1.2.10°
Table 3

Decrease of the final error in the z-coordinates (e.,; = 2; —z;)
with the gain L, with a high gain observer and in the absence
of noise.

Let us now implement an homogeneous observer of di-
mension 4 with an explicit Euler method with fixed mea-
surement and integration steps equaling 10~°, and with
the Matlab sign function. The degree is dy = —1, and the
gains are chosen according to [10], i-e k1 = 5, ko = 8.77,
ks = 4.44, k4 = 1.1. For a gain L = 3, the convergence is
achieved with a final error of 8.10™% on z4, even though
the Holder restriction of Proposition 4 is a priori not sat-
isfied around z; = 0. Unfortunately, the final errors are
heavily impacted in presence of noise, as illustrated in
Table 4. This may also come from a lack of ISS property.
Notice that the amplification of the noise by the gain L
is not as rapid as expected from the bound in Propo-
sition 4. The final errors remain nonetheless too large,
although, once again, we did not optimize our choice of
gains k;.

L €1 | €22 | €23 | €4
251015 | 3.5 30 18
3 0.15 3 35 25
4 0.1 2 25 50
5 0.1 2 30 80
6 0.1 2 35 120

Table 4
Final errors in the z-coordinates given by a homogeneous
observer of degree —1 in presence of noise.

8.4 Cascaded observers

In the absence of noise, the cascaded observers presented
in Sections 4 and 6 give similar results to the correspond-
ing observers in dimension 4, i-e arbitrary small asymp-
totic error and finite time convergence respectively. How-
ever, they seem to provide better accuracies in presence
of noise.

In the case of a high gain cascade observer, the errors, al-
though smaller than in the high gain observer of dimen-
sion 4, remain too large to consider it a viable solution.

11

On the other hand, the homogeneous cascade observer :

. 2
Zi1 = 212 — L1 k11 [211 — )3
. 1
212 = 213 — Lkio 211 —y]®
Z13 € =LY k13 S(211 — v)

. 3
Zo1 = 299 — Lo ko1 [221 — y]*

522 = 23 — L% koo [»’:’21 - Zﬂ 2
%23 = 294 + sat(gs(Z11, 212, 213))u — L3 kag [Z21 — ¥
Zo4 € —L3 koa S(201 — y)

ENE

with the coefficients kq; chosen, according to [16], as
ki1 = 3, k12 = 2.6, ki3 = 1.1, and ky; as above, and
with the gains Ly = 2.5 and Lo = 3, gives the following
final errors :
€z,11 = 0.057 €z,12 = 0.4:7 €213 = 2.5, €2,24 = 12
Comparing to Table 4, we see that implementing an
intermediate homogeneous observer of dimension 3 en-
ables to obtain much better estimates of the first three
states z;, which are then used in the nonlinearity of the
second block, thus giving a better estimate of zj.

Unfortunately, the presented results are still unsatisfac-
tory in presence of noise, which leaves the question of the
construction of robust observers for such systems unan-
swered.

9 Conclusion

To summarize the most important ideas, we provide in
Table 9 a synthetic comparison of the four observers
studied in this paper, in the usual case where the system
state and the input are bounded.

We have shown the convergence with an arbitrary small
error of the classical high gain observer in presence of
nonlinearities verifying some Holder-like condition. The
same result could probably be obtained for the high gain-
like observer presented in [7]. Also, for the case when this
Holder condition is not verified, we proposed a novel cas-
caded high gain observer. Under slightly more restrictive
assumptions, we proved the convergence of an homoge-
neous observer and of its cascaded version with the help
of an explicit Lyapunov function.

Our numerical experience indicates however that to
improve the performances in presence of measurement
noise, it is very difficult to tune the gains of both high
gain and homogeneous observers, although it is slightly
simpler for the latter since smaller gains are sufficient
to ensure convergence. Simulations on our example sug-
gest that the situation may be more favorable with the
cascaded homogeneous observer. Our ISS bounds in this
paper being far too conservative, it is necessary to carry
out a finer study if we want to optimally tune the gains
of the observers. It may also be appropriate to use on-
line gain adaptation techniques since large gains should
be necessary only around the points where the nonlin-
earities are not Lipschitz. About these two aspects, we



refer the reader to the survey in [I3] Sections 3.2.2 and
3.2.3] and the references therein.

A Barbot et al’s observer

The set valued map proposed in [4] to obtain an observer
for a triangular canonical form where the functions are
only locally bounded is defined as follows. Given (£, y, u),
(V1,...,0m) is in F(Z,y,u) if there exists (23, ..., Z;,) in
R™~! such that:

v1 = Za + g1(y) u
Z9 € Sat(ﬁg) — k1 S(y — 21)

Vi =Zig1 + 0i(Y, 22, ..., Zi) u
Zit+1 € sat(2i+1) — k; S(ﬁz —

i
Um € ©m (Y, 2o, .. Zm)
+gm(y,22, .. .,ém)u —kn S(ém — ém)

where sat is some saturation function.

B Proofof Lemma 1l

The proofis based on the following Proposition the proof
of which is given in the following section for the case
do = —1 and can be found for dy in | — 1, 0] in [2]. This
proposition establishes that for a chain of integrator it
is possible to construct homogeneous correction terms
which provide an observer and that it is possible to con-
struct a smooth strict homogeneous Lyapunov function.

Proposition 6 For all dy in [—1,0], the function V de-
fined in (18) is positive definite and there exists positive

real numbers ky, ... km, l1,... b, \ such that for all e in
R™, the following holds :

max{%‘e/(e) (S (@) —i—ﬁ(el))} < _iv(e

Let &(e1,5) be the function defined as
(R(er)); »ieLm—1],

and,

(we9), -

Note that £ is a continuous (single) real-valued function
which satisfies for all &; in R

kms, when dy = —1
(ﬁ(él))m , when dy > —1

R(&) = {R(e1,s), seS(@)}.
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Consider also the functions

_ oV L
n(e,0,v,s) = g(é)(sm(é) +0+ R(e +7,s))
A dy +dg
R
2
and
_ M dy+dg dy +dg
Y& w) =3 16T el
=1

With (B.1), we invoke Lemma 3 to get the existence of
a positive real number c; satisfying :

oV ~
%(é)(Sm(é) + A+ K1+ 9,8))
~ dy +dg m dy +dg dy +do

A ——
<V ™ ta Y 6 +all

i=1

This can be rewritten,

ov

g(é)(sm(é)—@—kﬁ(él—kv,s)) < -

Sm+2)”
m _ dy+dg 5\ B dy +dg
+ZGMM“—%MwW@W>

=1

dy +dg by

+Cl|11| 1 —m

Consequently, the result holds with A =
Cy = (%) dVTidO.

C Proof of Proposition 6 when dy = —1

A _
3tmt2) 6 =

In this section, we denote E; = (e, ...,e,). Let dy be
an integer such that dy > 2m — 1 and the functions &;
recursively defined by :

i
— e
Tit1

Rit1 ([Eieﬂ "

ﬁi (61) =

)

Let Viu(em) = % and for all ¢ in {1,...,m — 1}, let

also V; : R2 > R and V; : R* 1 & R be the functions
defined by

dy —r; dy =74
T4 —_ L6i+1.| Tit+1 dl’,

]

‘71'(% 6i+1) = / i
L

ei+1—‘ Ti41

Vi(E;) = Z %(gjejﬂej-ﬁ-l) + Vinlem) -

Jj=m-—1

With these definitions, the Lyapunov function V' defined
in (18) is simply V(e) = Vi(e) and the homogeneous



High gain (4) High gain cascade (11) Homogeneous (12) Homogeneous  cascade
(22)
Assumption | Holder with order greater | Continuous Holder with order greater | Continuous
on g; than in Table 1 than in (14) or Table 2 for
do =-—1
Convergence | Arbitrary small error Arbitrary small error Asymptotic convergence | Asymptotic convergence
Advantages | Easy choice of gains No constraint on g; Not necessarily large | No constraint on g;, con-
gains because conver- | vergence, apparently bet-
gence ter in terms of noise
Drawbacks Large gains necessary to | Same as for high gain, | Implementation of the | Large dimension and a
obtain small error = nu- | but also gains difficult to | sign function if dy = —1 | lot of gains to choose
merical problems (peak- | choose and large dimen- | (chatter etc)
ing) and sensitivity to | sion
noise
Table 5

Comparison between observers when the system state and the input are bounded.

vector field R(e1) = Ry (e1) with

ritl  Tit1

ki=0" 077 ...

K2 7

Ti+l  Ti41

T2 1
67 4

Note that the jth component of &; is homogeneous of
degree rj11 = m — j and, for any e; in R, the set £;(e;)
can be expressed as

Rie:) = {Rieirs), s €S(e)},

where &; : Rx[—1,1] — Ris a continuous (single valued)
function.

The proof of Proposition 6 is made iteratively from i =
m toward 1. At each step, we show that V; is positive
definite and we look for a positive real number /¢;, such
that for all F; in R?—¢+1

max
s€S(e;)

{ gg (Ei)(Sm—it1E: + Riles, s))}

dy —1

< —aVi(E) v, (C1)

where ¢; is a positive real number. The Proposition will

be proved once we have shown that the former inequality
holds for ¢ = 1.

Step i = m : At this step, Ey, Note that we have

8‘/ ~ o dv—l

dy —1

= *Cmvm(Em) dv

= €em.

dy —1
with ¢,,, = di,"V . Hence, equation (C.1) holds for i = m.
Step ¢ = j : Assume Vj is positive definite and assume
there exists (¢;41,...,4n) such that (C.1) holds for j =
dy —1; dy —rj
i—1. Note that the function z — [z] "7 —|ej41]| 7+
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\_€J+1-| 7) and

"j

therefore has the same sign as ¢ — [e;41| 7+t . Thus, for
any e fixed in R, the function v — V; (v,

is strictly increasing, is zero iff x =

ej+1) is non

7 _
negative and is zero only for v = |e;j11]9+1. Thus, V;
is positive and we have

- (E. —
V](Ej):0<:> 7‘/.74‘1( ]+1) 0
Villjej,ej+1) =0

{ j+1 =0
= i
tiej = lej+1]7+ =0

so that Vj is positive definite.

On another hand, let Vi, Ejy1) = Vipi(Ejn) +
V;i(v,e;j+1) and let T} be the function defined

) = max

T E;
1(1/7 i+l seES(v)

{Tl(% Eji1, 8)}

with 7} continuous and defined by

- oV
T (v, Ej+175) = WL(EjJrl)(SmfiflEiJrl +
J
- Ti41l dy —1
R (W7, 8) + LAV (0, Byp)

2

Let also 15 be the continuous real-valued function de-
fined by

v FES

Tr(v, Ej1) = —37;(% Eip)(ejy1—[v] 7).

Note that 77 and 75 are homogeneous with weight r; for
v and r; for e; and degree dy — 1. Besides, they verify
the following two properties :

I vinR

TQ(Z/, Ej+1) Z 0

- for all Ej+1 in R™




dy —r;

—le] )

Tit1 dy—rj
(since (|¥] ™ —ejtr1)and ([v] ™
have the same sign)
- for all (v, Ej41) in R™77T1\ {0}, and s in S(v), we
have the implication

T2(V7 Ej-‘rl) =0

= Tl(lj, Ej+1,8) <0

since T is zero only when |v| "7 =e;q; and
~ Ti+l
Tl(\_ej+1-| " an+1a3) =

Vi -

5Ej'+1 (Ej+1)(Sn—iEjt1 + Rj41(ejt1,8))

j
C dy —1 C dy —1
+ LV (Bi) v < LRV a(Bia) v

2 2
where we have employed (C.1) for i = j — 1.

Using Lemmas 4 in Appendix D, there exists £; such that
T(v, Ejr1) = 4;To(v, Ej1) <0,V (v, Ejta) -
Finally, note that
oV;
AT B S+ Ry | =
Ti(lje;) — 4;Ta(Lje, Ejya) —

Hence, (C.1) holds for i = j.

max
seS(e

. d
CJT+1‘/1(Ej) v

D Technical lemmas

Lemma 2 Let n be a continuous functions defined on
R and f a continuous function defined on R™. Let C

be a compact subset of R™. Assume that, for all x in C
and s in S(f(x)),

n(z,s) <0.

Then, there exists a > 0 such that for all x in C and s in

S(f(x))

n(z,s) < —a.

PROOF. Assume that for all k£ > 0, there exists xj in
C and si, in S(f(xx)) C [—1,1] such that

1
0 > n(zk, sk) > %

Then, n(zy, si) tends to 0 when k tends to infinity. Be-
sides, there exists a subsequence (k,,) such that zy,
tends to z* in C and si,, tends to s* in [—1,1]. Since 5
is continuous, it follows that n(z*,s*) = 0 and we will

have a contradiction if s* € S(f( *)). If f(z*) is not
zero, then by continuity of f, s* is equal to the sign of
f(z*), and otherwise, s* € [—1,1] = S(f(z*)). Thus,

s* e S(f(z

Lemma 3 Let n be a function defined on R™ homoge-
neous with degree d and weight vector v = (r1,...,7),
and V a positive definite proper function defined on R™

*)) in all cases.
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homogeneous of degree dy with same weight vectorr. De-
fine C = V=Y({1}). If there exists o such that for all x
inC

n(e) <a,
then for all x in R™ \ {0}, n(z) < aV(z)v.

PROOF. Let z in R" \ {0}. We have = ——— in
V()™
C. Thus 7(Z) < « and by homogeneity
1
— () <a
V()™

which gives the required inequality.

Lemma 4 Let n be a homogeneous function of degree d
and weight vector r defined on R™ by

n(z) =

max x,S
s€S(f(x)) (. 5)

where 7 is a continuous function defined on R™" ! and f a
continuous function defined on R™. Consider a continu-
ous function y homogeneous with same degree and weight
vector such that, for all x in R™ \ {0} and s in S(f(z))

V(@) =0,
v(z)=0 = q(z,s)<0.
Then, there exists ko > 0 such that, for allx in R™\ {0},
n(x) = ko y(z) <0.

PROOF. Define the homogeneous definite positive

d
=3

i and consider the compact set
=1

~1({1}). Assume that for all k& > 0, there exists
xy in C and sy in S(f(xy)) such that

function V(x

n(xk, sg) >k y(xr) >0

7 is continuous, and thus bounded on the compact set
C x [=1,1]. Therefore, y(z)) tends to 0 when k tends to
infinity. Besides, there exists a subsequence (k,,) such
that xy,, tends to «* in C and sy, tends to s* in [—1, 1].
It follows that v (z*) = 0 since v is continuous. But with
the same argument as in the proof of Lemma 2, we have
s* € S(f(z*)). It yields that 7(x*, s*) < 0 by assumption
and we have a contradiction.

Therefore, there exists kg such that
Mi(z,s) = ko y(z) <0

for all z in C and all s in S(f(x)). Thus, with Lemma 2
there exists a > 0 such that

iz, s) = ko y(z) < —a

n(@) — ko y(z) <0
for any x in C. The result follows applying Lemma 3.

so that



Lemma 5 For a positive bounded continuous function
t — c(t) and an absolutely continuous function t — v(t)
satisfying

for almost allt such that v(t) > c(t) then v(t) < —v(t)?
with d in 10, 1[. Then, for allt in [0,T]

v(t) < max {0, max{v(0) — ¢(0),0)14 — t}l/(lfd)

+ sup c(s) .
s€0,t]

PROOF. This is a direct consequence of the fact that
we have for almost all ¢ such that max{v(¢) —¢,0}) is C!

max{l/(t.) —¢,0} < —max{v(t) —¢,0}?
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