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Abstract

We address the problem of designing an observer for triangular non locally Lipschitz dynamical systems. We show the
convergence with an arbitrary small error of the classical high gain observer in presence of nonlinearities verifying some Hölder-
like condition. Also, for the case when this Hölder condition is not verified, we propose a novel cascaded high gain observer.
Under slightly more restrictive assumptions, we prove the convergence of an homogeneous observer and of its cascaded version
with the help of an explicit Lyapunov function.
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1 Introduction

A preliminary step is often required in the construction
of observers for controlled nonlinear systems. It con-
sists in finding a reversible coordinate transformation,
allowing us to rewrite the system dynamics in a target
form more favorable for writing and/or analyzing the
observer. For example, the dynamics of a controlled sin-
gle output system of dimension n which is uniformly ob-
servable (see [12, Definition I.2.1.2]) and differentially
observable of order m (see [12, Definition I.2.4.2]) with
m = n can be written with appropriate coordinates in
a Lipschitz triangular form appropriate for the design
of a high gain observer ([10, 11]). Such a property is no
more true when the order m is strictly larger than the
dimension n. Indeed in this case, we may still get the
usual triangular form but with functions that may not
be Lipschitz ([6]). A particular case of this is when there
is only one nonlinear function (in the last line for the
single output case). This is the so-called phase-variable
form. It has been known for a long time, in particular in
the context of dirty-derivatives and output differentia-
tion, that a high gain observer can provide an arbitrary
small error as long as the nonlinearity is bounded ([26]
among many others). We also know since [14] that a slid-
ing mode observer can achieve finite-time convergence
under the same assumption. In this paper, we want to
build observers for the more general triangular canon-
ical form where non-Lipschitz triangular nonlinearities
can appear on any line. As far as we know, this form has
not received much attention apart from its well-known
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Lipschitz version and the convergence results holding for
the phase-variable form do not extend trivially.

This paper follows and completes [5]. We show here
that the classical high gain observer may still be used
when the nonlinearities verify some Hölder-type condi-
tion. Nevertheless, the asymptotic convergence is lost
and only a convergence with an arbitrary small error
remains. When the nonlinearities do not verify the re-
quired Hölder regularity, it is also possible to use a cas-
cade of high gain observers, but once again, the conver-
gence is only with an arbitrary small error.

Fortunately, moving to a generalization of high gain
observer exploiting homogeneity makes it possible to
achieve convergence. It is at the beginning of the cen-
tury that researchers started to consider homogeneous
observers with various motivations: exact differentiators
([14, 15, 16]), domination as a tool for designing stabi-
lizing output feedback ([27], [20], [21], [3] and references
therein (in particular [1])), ... The advantage of this type
of observers is their ability to face Hölder nonlinearities.

With the tools introduced in [2], we have at our disposal
a Lyapunov design to obtain an homogeneous observer
with degree in ]−1, 0[ for the triangular form mentioned
above. By construction, convergence is guaranteed if the
nonlinearities verify a Hölder-type condition. We show
here that the same Lyapunov design can be extended to
the case where the degree of homogeneity is −1. This is
interesting since the constraints on the nonlinearities be-
come less and less restrictive when the degree gets closer
to −1. It turns out that, in the absence of nonlineari-
ties, the observer we obtain is actually the exact differ-
entiator presented in [14] and which is defined by an ho-
mogeneous differential inclusion. But as opposed to [14]
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where convergence is established via a solution-based
analysis, in our case, convergence is again guaranteed
by construction since the design gives also a homoge-
neous strict Lyapunov function. Moreover this function
enables us to quantify the effect of the observer param-
eters on the behavior in presence of Hölder nonlinear-
ities and disturbances. Of course, knowing the conver-
gence of the exact differentiator from [14], we could have
deduced the existence of such a Lyapunov function via
a converse theorem as in [18]. But with only existence,
effect quantifications as mentioned above is nearly im-
possible. Actually many efforts have been made to get
expressions for Lyapunov functions but, as opposed to
Lyapunov design, Lyapunov analysis is much harder. As
far as we know, expressions of Lyapunov functions have
been obtained this way only for m ≤ 3. See [19].

Finally, to face the unfortunate situation where the non-
linearities verify none of the above mentioned Hölder
type conditions, we propose a novel observer made of a
cascade of homogeneous observers whose maximal total

dimension is m(m+1)
2 . We prove that it converges without

requiring anything on the nonlinearities (except conti-
nuity) in the case where the system trajectories and the
input are bounded.

All along our paper, we sometimes use stronger assump-
tions than necessary in order to simplify the presenta-
tion of our results. We signal them to the reader with

a ☼ symbol as in “the trajectories are complete☼ ”. We
discuss how they can be relaxed later in Section 7, in par-
ticular when we restrict our attention to compact sets.

Notations

(1) We define the signed power function as

baeb = sign(a) |a|b ,
where b is a nonnegative real number. In the partic-
ular case where b = 0, bae0 is actually any number
in the set

S(a) =


{1} if a > 0 ,

[−1, 1] if a = 0 ,

{−1} if a < 0 .

(1)

Namely, writing c = bae0 means c ∈ S(a). Note
that the set valued map a 7→ S(a) is upper semi-
continuous with nonempty, compact and convex
values.

(2) For (z1, . . . , zi) and (ẑ1, . . . , ẑi) (resp. (ẑi1, . . . , ẑii))
in Ri, we denote

zi = (z1, . . . , zi)

ẑi = (ẑ1, . . . , ẑi) (resp. ẑi = (ẑi1, . . . , ẑii))

eij = ẑij − zj , ej = ẑj − zj , ei = ẑi − zi .

2 Continuous triangular form

Consider a nonlinear system of the form



ż1 = z2 + Φ1(u, z1) + w1

...

żi = zi+1 + Φi(u, z1, . . . , zi) + wi
...

żm = Φm(u, z) + wm

y = z1 + v

, (2)

where z is the state in Rm, y is a measured output in R,
Φ is a continuous function which is not assumed to be
locally Lipschitz. w can model either a known or an un-
known disturbance on the dynamics and v is an unknown
disturbance on the measurement. Given locally bounded
measurable time functions t 7→ u(t) and t 7→ w(t), we de-
noteZ(z, t;u,w) a solution of (2) going through z at time
0 which, to simplify the presentation, is assumed to be

defined for all t ≥ 0 (i.e. the trajectories are complete☼).
We are interested in estimating Z(z, t;u,w) knowing y
and u.

As mentioned in the introduction, this kind of triangular
continuous form, as we call (2), appears when we con-
sider systems which are uniformly observable and dif-
ferentially observable but with an order larger than the
system’s dimension. An example is given in Section 8.

The only existing observer we are aware of able to cope
with Φ no more than continuous is the one presented in
[4]. Its dynamics are described by a differential inclusion
(see Appendix A) :

˙̂z ∈ F (ẑ, y, u)

where (ẑ, y, u) 7→ F (ẑ, y, u) is a set valued map. In the
disturbance free context (i.e. v = wi = 0), it can be
shown that any absolutely continuous solution gives in
finite time an estimate of z under the only assumption of
boundedness of the input and of the state trajectory. But
the set valued map F above does not satisfy the usual
basic assumptions (upper semi-continuous with compact
and convex values) (see [9, 22]). It follows that we are
not guaranteed of the existence of absolutely continu-
ous solutions nor of possible sequential compactness of
such solutions and therefore of possibilities of approx-
imations of F . That is why, in this paper, we look for
other candidate observers for the triangular form (2).

In doing so, we might have to restrict the possible non-
linearities allowed to obtain the existence of an observer.
The restriction we will impose can be described as fol-
lows. For a positive real number a, and a vector α in

[0, 1]
m(m+1)

2 , we will say that the function Φ verifies the
property P(α, a) if :

Property P(α, a)
☼

: For all i in {1, . . . ,m}, for all zia
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and zib in Rm and u in U , we have 1 :

|Φi(u, zia)− Φi(u, zib)| ≤ a

i∑
j=1

|zja − zjb|αij . (3)

This property captures many possible contexts. In the
case in which αij > 0, it implies that the function Φ
is Hölder with power αij . When the αij = 0, it simply
implies that the function Φ is bounded. In the following,
our aim is to design an observer depending on the values
of α.

It is possible to employ the degree of freedom given in
(2) by the time functions w to deal with the case in
which the given function Φ(u, z) doesn’t satisfy P(a, α).
In this case, an approximation procedure can be carried
out to get a function Φ̂ satisfying P(a, α) and selecting

w = Φ(u, z)− Φ̂(u, z) which is an unknown disturbance.
The quality of the estimates obtained from the observer
will then depend on the quality of the approximation (i-
e the norm of w). This is what is done for example in [17]
when dealing with locally Lipschitz approximations. We
will further discuss in Section 7 how to relax assumption
P(a, α).

In Section 3, we start by showing the convergence with
an arbitrary small error of the classical high gain ob-
server when the nonlinearity Φ verifies the property P
for certain values of αij . We deduce in Section 4 the con-
vergence with an arbitrary small error for a cascaded
high gain observer when the input and the state trajec-
tories are bounded. On an other hand, in Section 5, we
show that replacing the high gain structure by an homo-
geneous structure enables to obtain convergence under a
slightly more restrictive Hölder restriction. Then, a cas-
caded homogeneous observer is presented in Section 6,
which ensures asymptotic convergence when the input
and the state trajectories are bounded. As already men-
tioned, in Section 7, we indicate how the assumptions,

marked with ☼ in the text, can be relaxed. Finally, we
illustrate our observers with an example in Section 8.

3 High gain observer

We consider in this section a classical high gain observer:
˙̂z1 = ẑ2 + Φ1(u, ẑ1) + ŵ1 − Lk1 (ẑ1 − y)
˙̂z2 = ẑ3 + Φ2(u, ẑ1, ẑ2) + ŵ2 − L2 k2 (ẑ1 − y)

...
˙̂zm = Φm(u, ẑ) + ŵm − Lm km (ẑ1 − y)

(4)

where L and the ki’s are gains to be tuned, y is the
measurement. The ŵi are approximations of the wi. In
particular, when wi represents unknown disturbances,

1 Actually Φi can depend also on zi+1 to zm as long as (3)
holds. It can also depend on time requiring some uniform
property (see Section 7).

the corresponding ŵi is simply taken equal to 0. In the
following, we denote

∆w = ŵ − w .

When Φ satisfies the property P(α, a) with αij = 1 for
all 1 ≤ j ≤ i ≤ m, we recognize the usual triangular Lip-
schitz property for which the nominal high-gain observer
gives an input to state stability (ISS) property with re-
spect to the measurement disturbance v and dynamics
disturbance w. It is well known that the ISS gain be-
tween the disturbance and the estimation error depends
on the high-gain parameter L. Specifically, we have the
following well known result. See for instance [13] for a
proof.

Proposition 1 (Nominal high-gain) There exist
real numbers k1, . . . , km, L∗, λ, β and γ such that,

a) for all functions Φ satisfying☼ for all i and for all zia
and zib in Rm

|Φi(u, zia)− Φi(u, zib)| ≤ a

i∑
j=1

|zja − zjb|+ bi (5)

b) for all L ≥ max{aL∗, 1},
c) for all locally bounded time function (u, v, w, ŵ), all

(z, ẑ) in Rm × Rm,

any solution Ẑ(ẑ, z, t;u, v, w, ŵ) of (4) verifies, for all t0
and t such that t ≥ t0 ≥ 0, and for all i in {1, ...,m},∣∣∣Ẑi(t)− Zi(t))∣∣∣ (6)

≤ max

{
Li−1β

∣∣∣Ẑi(t0)− Zi(t0))
∣∣∣ e−λL(t−t0),

γ sup
1≤j≤m
s∈[t0,t]

{
Li−1 |v(s)|, |∆wj(s)|+ bj

Lj−i+1

}}
.

where we have used the abbreviation Z(t) = Z(z, t;u,w)

and Ẑ(t) = Ẑ(z, ẑ, t;u, v, w, ŵ).

Since the nominal high-gain observer gives asymptotic
convergence for Lipschitz nonlinearities, we may won-
der what type of property is preserved when the non-
linearities are only Hölder. In the following proposition,
we show that the usual high-gain observer can provide
an arbitrary small error on the estimate providing the
Hölder orders αij satisfy the restrictions given in Table
1 or Equation (7).

Proposition 2 Assume the function Φ verifies P(α, a)

for some (α, a) in [0, 1]
m(m+1)

2 × R+ satisfying, for 1 ≤
j ≤ i

m−i−1
m−i < αij ≤ 1 for i = 1 . . . ,m− 1 ,

0 ≤ αmj ≤ 1
(7)

Then, there exist real numbers k1, . . . , km, such that, for
all ε > 0 we can find positive real numbers λ, β, γ, and
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j 1 2 . . . m−2 m−1 m

i
1

m−2
m−1

2
m−3
m−2

m−3
m−2

... αij >
...

...
. . .

m−2
1
2

1
2 . . . 1

2

m−1 0 0 . . . . . . 0

m αmj ≥ 0 0 . . . . . . . . . 0

Table 1 : Hölder restrictions on Φ for arbitrarily small
errors with a high gain observer.

L∗ such that, for all L ≥ L∗, for all locally bounded
time function (u, v, w, ŵ) and all (z, ẑ) in Rm×Rm, any

solution Ẑ(ẑ, z, t;u, v, w, ŵ) of (4) verifies, for all t0 and
t such that t ≥ t0 ≥ 0, and for all i in {1, ...,m},∣∣∣Ẑi(t)− Zi(t))∣∣∣
≤ max

{
ε , Li−1β

∣∣∣Ẑi(t0)− Zi(t0))
∣∣∣ e−λL(t−t0),

γ sup
1≤j≤m
s∈[t0,t]

{
Li−1 |v(s)|, |∆wj(s)|

Lj−i+1

} }
where we have used the abbreviation Z(t) = Z(z, t;u,w)

and Ẑ(t) = Ẑ(z, ẑ, t;u, v, w, ŵ).

Comparing this inequality with (6), we have now the
arbitrarily small non zero ε in the right hand side but
this is obtained under the Hölder condition instead of
the Lipschitz one.

PROOF. With Young’s inequality, we obtain from (3)
that, for all σij in R+ and all ẑ and z in Rm

|Φi(u, ẑi)− Φi(u, zi)| ≤
i∑

j=1

aij |ẑj − zj |+ bij , (8)

with aij and bij defined as
aij = 0 , bij = a , if αij = 0

aij = a
1
αij αijσ

1
αij

ij , bij =
1−αij

σ

1
1−αij
ij

if 0 < αij < 1

aij = a , bij = 0 if αij = 1

(9)
With (8), the assumptions of Proposition 1 are satisfied

with bi =
∑i
j=1 bij . It gives k1, . . . , km, L∗, λ, β and γ

and, if L > maxi≥j {aijL∗, 1}, the solution satisfies the
ISS inequality (6). The result will follow if there exist L
and σij such that

L > max
i≥j
{aijL∗, 1} , max

i,j

j∑
`=1

γbj`L
i−j−1 ≤ ε . (10)

At this point, we have to work with the expressions of
aij and bj` given in (9). From (7), αij can be zero only
if i = m. And, when αm` = 0, we get

γbm`L
i−m−1 = γaLi−m−1 ≤ γa

L

Say that we pick σm` = 1 in this case. For all the other
cases, we choose

σj` =

(
2jγ

ε
(1− αj`)L(m−j−1)

)1−αj`
,

to obtain from (9)

γbj`L
i−j−1 ≤ ε

1

j

1

2Lm−i

So, with this selection of the σj`, the right inequality in
(10) is satisfied for L sufficiently large. Then, according
to (9), the aij are independent of L or proportional to

L
(m−i−1)

1−αij
αij . But with (7) we have

0 < (m− i− 1)
1− αij
αij

< 1 .

This implies that
aij
L tends to 0 as L tends to +∞. We

conclude that (10) holds if we pick L sufficiently large.

It is interesting to remark the weakness of the assump-
tions imposed on the last two components of the func-
tion Φ. Indeed, (7) only imposes that Φm−1 be Hölder
without any restriction on the order, and that Φm be

bounded☼.

4 Cascaded high gain observer

According to Proposition 2, the classical high gain ob-
server can provide an arbitrary small error when the last
nonlinearity is only bounded and when there is no dis-
turbance. We exploit here this observation by propos-
ing the following cascaded high gain observer to deal
with the case where the functions Φi do not satisfy (7):

˙̂z11 = ŵ1 − L1 k11 (ẑ11 − z1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

˙̂z21 = ẑ22 + Φ1(u, ẑ11) + ŵ1 − L2 k21 (ẑ21 − z1)
˙̂z22 = ŵ2 − L2

2 k22 (ẑ21 − z1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

...
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
˙̂zm1 = ẑm2 + Φ1(u, ẑ(m−1)1) + ŵ1 − Lm km1 (ẑm1 − z1)
˙̂zm2 = ẑm3 + Φ2(u, ẑ(m−1)1, ẑ(m−1)2)

+ŵ2 − L2
m km2 (ẑm1 − z1)

...
˙̂zmm = ŵm − Lmm kmm (ẑm1 − z1) (11)

with the gain kij chosen as in a classical high gain ob-
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server of dimension i, ŵi are estimations of wi and Li
are the high gains parameters to be chosen.

Assuming the input function and the system solution
are bounded, it is shown in the following that estimation
with an arbitrary small error can be achieved by the
cascaded high-gain observer.

Proposition 3 Assume Φ is continuous. For any pos-
itive real numbers z and u, for any strictly positive real
number ε, there exist a choice of (L1, ..., Lm), a class KL
function β and two class K∞ functions γ1 and γ2 such
that, for all locally bounded time function (u, v, w, ŵ),
for all (z, ẑ) in Rm × Rm and for all t such that
|Z(z, s;u,w)| ≤ z and |u(s)| ≤ u for all 0 ≤ s ≤ t, any

solution
(
Ẑ1(ẑ, z, t;u, v, w, ŵ), ..., Ẑm(ẑ, z, t;u, v, w, ŵ)

)
of (11) verifies, for all i in {1, . . . ,m},

|Ẑi(t)− Zi(t)|

≤ max

{
ε , β

 i∑
j=1

|ẑj − zj |, t

 ,

sup
s∈[0,t]

{
γ1(|v(s)|), γ2(|∆w(s)|)

}}
where Ẑi is the state of the ith block (see Nota-

tion 2) and we have used the abbreviation Ẑi(t) =

Ẑi(ẑ, z, t;u, v, w, ŵ) and Zi(t) = Zi(z, t;u,w).

PROOF. This result is nothing but a straightforward
consequence of the fact that a cascade of ISS systems is
ISS.

Specifically the error system attached to the high gain
observer in block i has state ei (see Notation 2) and
input v and δij defined as

δij =
[
Φj(u, ẑ(i−1))− Φj(u, z(i−1))

]
+ [ŵj − wj ]

δii = −zi+1 − Φi(u, zi) + ŵi − wi

with zm+1 = 0. With Proposition 1, we have the exis-
tence of ki1, . . . , kii, λi, βi and γi such that we have, for
all Li ≥ 1, all t ≥ ti ≥ 0, all j in {1, . . . , i} and with
eij(t) denoting the jth error in the ith block evaluated
along the solution at time t,

|eij(t)|

≤ max

{
Lj−1
i βi |ei(ti)| e−λiLi(t−ti),

γi sup
1≤`≤j
s∈[ti,t]

{
Lj−1
i |v(s)|, |δi`(s)|

L`−j+1
i

} }
.

But the continuity of the Φj implies the existence of a
function 2 ρ of class K such that, for all j in {1, . . . ,m}

2 Simply take ρ(s) = max|u|≤u,|zj |≤z,|e|≤s |Φj(u, zj + e) −
Φj(u, zj)|.

and for all (z(i−1), ẑ(i−1), u) in Ri−1 ×Ri−1 ×U satisfy-
ing |z(i−1)| ≤ z and |u| ≤ u,

|Φj(u, ẑ(i−1))− Φj(u, z(i−1))| ≤ ρ
(
|e(i−1)|

)
.

This implies

|δi`(s)| ≤ ρ(|ei−1(s)|) + |∆w`(s)| , ` = 1, . . . , j − 1 ,

|δii(s)| ≤ zi+1 + Φi + |∆wi(s)| ,

where Φi = max|u|≤u,|zi|≤z |Φi(u, zi)|. Hence, we have

the existence of ci independent of Li such that

|ei(t)|

≤ ci max

{
Li−1
i |ei(ti)| e−λiLi(t−ti) , sup

s∈[ti,t]

Li−1
i |v(s)| ,

sup
s∈[ti,t]

ρ(|ei−1(s)|)
L2−i
i

, sup
1≤`≤i
s∈[ti,t]

|∆w`(s)|
L`−i+1
i

,
zi+1 + Φi

Li

}
.

This makes precise what we wrote above that we have a
cascade of ISS systems. Hence (see [23, Prop. 7.2]), for
each i in {1, . . . ,m}, there exist a class KL function β̄i
and class K functions γvi and γwi, each depending on L1
to Li and such that we have, for all t ≥ 0,

|ei(t)| ≤ max

{
β̄i

(
max

j∈{1,...,i}
{|ej(0)|}, t

)
,

$i , sup
s∈[0,t]

{γvi(|v(s)|), γwi(|∆w(s)|)}

}
.

where $i is a positive real number defined by the se-
quences

$1 = c1
z2 + Φ1

L1
, $i = ci max

{
zi+1 + Φi

Li
,
ρ($i−1)

L2−i
i

}
.

Then by picking Li ≥ L∗i where L∗i is defined recursively
as :

εm = ε , εi = min

(
ε, ρ−1

(
εi+1

ci+1L
i−2
i+1

εi+1

))
L∗m =

cmΦm

εm
, L∗i =

ci[zi+1 + Φi]

εi

we obtain $i ≤ ε for all i, hence the result.

This observer has the advantage of working without any
assumption on the nonlinearities besides their continu-
ity. Note however that it requires the knowledge of a
bound on the system solution and on the input. Also
we may not need to build m blocks, since according to
Proposition 2, we need to create a new block only for the
indexes i where Φi does not verify Property P(α, a) for
any a ≥ 0 and with α satisfying (7). Unfortunately, as
it appears from the proof of Proposition 3, the choice of

5



(L1, ..., Lm) can be complicated. Besides, only a conver-
gence with an arbitrary small error is obtained. It may
thus be necessary to take very high gains which is prob-
lematic in terms of peaking and most importantly in
presence of noise (see Section 8). In the following two sec-
tions, we move our attention to homogeneous observers,
and show that they enable to obtain convergence.

5 Homogeneous observer

Homogeneous observers are extensions of high gain ob-
servers able to cope with some non Lipschitz functions.
As mentioned in the introduction, they already have an
old history (see [14], [15], [27], [16], [20], [21], [1], [2], [3]
). In our context they take the form :

˙̂z1 = ẑ2 + Φ1(u, ẑ1, t) + ŵ1 − Lk1 bẑ1 − ye
r2
r1

˙̂z2 = ẑ3 + Φ2(u, ẑ1, ẑ2, t) + ŵ2 − L2 k2 bẑ1 − ye
r3
r1

...

˙̂zm = Φm(u, ẑ, t) + ŵm − Lm km bẑ1 − ye
rm+1
r1

(12)
where r is a vector in Rm+1, called weight vector, the
components of which, called weights, are defined by

ri = 1− d0(m− i) , (13)

and where L and the ki’s are gains to be tuned, d0 is
a parameter to be chosen in [−1, 0]. We refer to Nota-
tion (1) for the case d0 = −1, for which the dynam-
ics (12) must be understood as a differential inclusion.
When d0 = 0, we recover the high-gain observer stud-
ied in Section 3. As mentioned in Proposition 2, the
usual high-gain observer can provide an estimation with
an arbitrary small error provided the nonlinearity sat-
isfies the property P(α, a) with the αij verifying (7). In
the following proposition we claim that asymptotic es-
timation may be obtained with homogeneous correction
terms and when considering nonlinearities which satis-
fies P(α, a) with the αij verifying

αij =
1− d0(m− i− 1)

1− d0(m− j)
=
ri+1

rj
, 1 ≤ j ≤ i ≤ m .

(14)
Those conditions in the extreme case where d0 = −1
are summed up in Table 2. On top of that, finite time
estimation may be obtained.

Proposition 4 Assume that there exist d0 in [−1, 0] and
a in R+ such that Φ satisfies P(α, a) with α verifying

(14)☼. There exist (k1, . . . , km), such that for all w̄m > 0
there exist L∗ ≥ 1 and a positive constant γ such that, for
all L ≥ L∗ there exists a class KL function β such that
for all locally bounded time function (u, v, w, ŵ), and all
(z, ẑ) in Rm×Rm system (12) admits absolutely contin-

uous solutions Ẑ(ẑ, z, t;u, v, w, ŵ) defined on R+ and for
any such solution the following implications hold for all
t0 and t such that t ≥ t0 ≥ 0, and for all i in {1, ...,m} :
If d0 > −1 :

j 1 2 . . . m−2 m−1 m

i
1

m−1
m

2
m−2
m

m−2
m−1

... αij =
...

...
. . .

m−2
2
m

2
m−1 . . . 2

3

m−1
1
m

1
m−1 . . . . . . 1

2

m 0 0 . . . . . . . . . 0

Table 2 : Hölder restrictions on Φ for a homogeneous
observer with d0 = −1

|Ẑi(t)− Zi(t)| ≤ max

{
β(|Ẑ(t0)− Z(t0)|, t− t0) , (15)

γ sup
1≤j≤i
s∈[t0,t]

{
Li−1|v(s)|

ri
r1 ,
|∆wj(s)|

ri
rj+1

Lµij

} }

where µij = (j−i+1) r1
rj+1

, and we have used the abbrevia-

tion Z(t) = Z(z, t;u,w) and Ẑ(t) = Ẑ(z, ẑ, t;u, v, w, ŵ).
Moreover, when d0 < 0 and v(t) = wj(t) = 0 for all t and

j = 1, . . . ,m, there exists T such that Ẑ(ẑ, z, t) = Z(z, t)
for all t ≥ T .

If d0 = −1 and |∆wm(t)| ≤ w̄m :

|Ẑi(t)− Zi(t)| ≤ max

{
β(|Ẑ(t0)− Z(t0)|, t− t0) , (16)

γ sup
1≤j≤i−1

s∈[t0,t]

{
Li−1|v(s)|

ri
r1 ,
|∆wj(s)|

ri
rj+1

Lµij

} }

where µij, Z(t) and Ẑ(t) are defined above.
Moreover, when v(t) = wj(t) = 0 for all t and j =

1, . . . ,m, there exists T such that Ẑ(t) = Z(t) for all
t ≥ T .

Note that j is in {1, . . . , i} in (15) whereas it is in
{1, . . . , i− 1} in (16).

The proof of Proposition 4 for the case d0 ∈]− 1, 0] and
without disturbances is given for example in [2]. Actu-
ally [2] gives a Lyapunov design of the observer (12) with
a recursive construction of both Lyapunov function and
observer. Here we are concerned with the case d0 = −1.
In this limit case, the observer (12) is a differential in-
clusion corresponding to the exact differentiator studied
in [14], where convergence is established in the particu-
lar case in which Φi = 0 for j = 1, . . . ,m− 1 and Φm is
bounded. We prove in Proposition 6 that the Lyapunov
design of [2] can be extended to this case. This allows us
to show that the observer (12) still converges if, for each
i, Φi is Hölder with order αij equal to the values given
in Table 2, where i is the index of Φi and j is the index
of ej . We also recover the same bound in presence of a
noise v as the one given in [14].
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Actually some effort has been devoted to Lyapunov anal-
ysis for establishing the convergence of the observer pro-
posed in [14]. But, as far as we are aware of, this more
difficult route has been successful for m ≤ 3 only. See
[19].

Finally, it is interesting to remark that in the case d0 =
−1 the ISS property between the disturbance wm and
the estimation error is with restrictions as defined in [25,
Definition 3.1]. If |∆wm(t)| ≤ w̄m and L is chosen suffi-
ciently large, then asymptotic convergence is obtained.
However, nothing can be said when |∆wm| > w̄m. More-
over, it may be possible for a bounded large disturbance
to induce a norm of the estimation error which goes to
infinity. We believe that this problem could be solved
employing homogeneous in the bi-limit observer as in
[2]. It is shown to be doable in dimension 2 in [8].

PROOF. The set-valued function e1 7→ be1e0 defined
in Notations 1 is upper semi-continuous and has convex
and compact values. Thus, according to [9], there exist
absolutely continuous solutions to (12).

Let L = diag(1, L, ..., Lm−1). The error e = ẑ − z pro-
duced by the observer (12) satisfies

ė ∈ LSme+ δ + LLK(e1 + v) (17)

where Sm is the shifting matrix of order m,

δ = Φ(u, ẑ) + ŵ − Φ(u, z)− w ,

and K is the homogeneous correction term the compo-
nents of which are defined as

(K(e1))i = ki be1e
ri+1
r1

where (k1, . . . , km) are positive real number and ri is
defined in (13).

Let also V : Rm → R+ be the function defined as

V (ē) =

m−1∑
i=1

∫ `iēi

bēi+1e
ri
ri+1

[
bxe

dV −ri
ri − bēi+1e

dV −ri
ri+1

]
dx

+
|ēm|dV
dV

, (18)

where dV and `i are positive real numbers such that dV >
2m − 1. Note that V is a homogeneous function with
weight vector r. It is nothing but the one proposed in [2,
Theorem 3.1] for designing an observer homogeneous in
the bi-limit with d0 in ]−1, 0]. There it is shown that, by
appropriately selecting the parameters `i and ki, V is a
strict C1 Lyapunov function homogeneous of degree dV
for the L-independent auxiliary system with state ē :

˙̄e ∈ Smē+ K(ē1) . (19)

With this result in hand a robustness analysis can be
carried out on a system of the form (17). In fact, the
same approach can be followed for the case d0 = −1 and
the following technical result is proved in Appendix B.

Lemma 1 For all d0 in [−1, 0], the function V defined
in (18) is positive definite and there exist positive real
numbers k1, . . . km, `1, . . . `m, λ, cδ and cv such that for
all ē in Rm, δ̄ in Rm and v̄ in R the following implication
holds :

if |δ̄i| ≤ cδV (ē)
ri+1
dV , ∀i , and |v̄| ≤ cvV (ē)

r1
dV then 3

max

{
∂V

∂ē
(ē)(Sm(ē) + δ̄ + K(ē1 + v̄))

}
≤ −λV (ē)

dV +d0
dV .

This Lemma says V is a ISS Lyapunov function for the
auxiliary system (19). See [24, Proof of Lemma 2.14]
for instance. Consider now the scaled error coordinates
ε = L−1(ẑ−z). Straightforward computations from (17)
give the error system

1

L
ε̇ ∈ Smε+DL + K(ε1 + v)

withDL = L−1δ. Since Φ satisfies P(α, a), with (14) and
ri+1

rj
≤ 1, we obtain, for all L ≥ 1

|DL,i| ≤
a

L

i∑
j=1

L
(j−1)

ri+1
rj
−i+1|εj |

ri+1
rj +

|∆wi|
Li

,

≤ a

L

i∑
j=1

|εj |
ri+1
rj +

|∆wi|
Li

,

≤ c

L
V (ε)

ri+1
dV +

|∆wi|
Li

,

where c is a positive real number obtained from Lemma
3 in Appendix D. With Lemma 1, where δ̄i plays the
role of DL,i, v̄ the role of v and ē the role of ε, we obtain
that, by picking L∗ sufficiently large such that c

L∗ ≤ cδ
2 ,

we have, for all L > L∗,

if


|∆wi|
Li

≤ cδ
4
V (ε)

ri+1
dV , ∀i

|v| ≤ cvV (ε)
r1
dV

(20)

⇒ 1

L
max

{
∂V

∂e
(ε)ε̇

}
≤ −λV (ε)

dV +d0
dV .

Now, when evaluated along a solution, ε gives rise to
an absolutely continuous function t 7→ ε(t). Similarly
the function defined by t 7→ ν(t) = V (ε(t)) is absolutely
continuous. It follows that its time derivative is defined
for almost all t and, according to [22, p174], (20) im-
plies, for almost all t,

3 Here the max is with respect to s in bē1 + v̄)e0 appearing
in the mth component K(ē1 + v̄)m of K(ē1 + v̄).
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if


|∆wi|
Li

≤ cδ
4
ν(t)

ri+1
dV , ∀i

|v| ≤ cvν(t)
r1
dV

(21)

⇒ 1

L
ν̇(t) ≤ −λν(t)

dV +d0
dV .

Here two cases have to be distinguished.

(1) If d0 is in ] − 1, 0], with Lemma 5 in Appendix D
(see also [24]), we get the existence of a class KL
function βV such that 4

V (ε(t)) ≤ max
i∈[1,m]

{
βV (V (ε(0)), λLt),

sup
s∈[0,t]


(

4|∆wi(s)|
Licδ

) dV
ri+1

,
|v(s)|

dV
r1

cv


}
.

The result holds since with Lemma 3 there exist a
positive real number c1 such that∣∣∣ ei

Li−1

∣∣∣ ≤ c1V (ε)
ri
dV .

Moreover, when v(t) = ∆wj(t) = bj = 0 for
j = 1, . . . ,m, (21) implies finite time convergence
in the case in which d0 < 0.

(2) If d0 = −1, then rm+1 = 0. We choose L∗ suffi-
ciently large to satisfy

w̄m
(L∗)m

≤ cδ
4
.

We obtain that the first condition in (21) is satis-
fied for i = m when L ≥ L∗. With Lemma 5 in
Appendix D (see also [24]), the implication (21) im-
plies the existence of a class KL function βV such
that 4

V (ε(t)) ≤ max
i∈[1,m−1]

{
βV (V (ε(0)), λLt),

sup
s∈[0,t]


(

4|∆wi(s)|
Licδ

) dV
ri+1

,
|v(s)|

dV
r1

cv


}
.

And the result holds as in the previous case.

6 Cascade of homogeneous observers

When we cannot find d0 in [−1, 0] and a such that the
nonlinearities satisfy P(α, a), with α defined in (14), we
may lose the convergence of observer (12), or the possi-
bility of making the final error arbitrarily small. In such a
bad case, we can still take advantage of the fact that, for

4 according to Lemma 5, βV (s, t) = max{0, s
−d0
dV − t}

dV
−d0

α verifying (14) with d0 = −1, P(α, a) does not impose
any restriction besides boundedness of the last functions
Φm (see Table 2).

From the remark that observer (12)

(1) can be used for the system

ż1 = z2 + ψ1(t)

...

żk−1 = zk + ψk−1(t)

żk = ϕk(t)

provided the functions ψi are known and the func-
tion ϕk is unknown but bounded, with known
bound.

(2) gives estimates of the zi’s in finite time,

we see that it can be used as a preliminary step to deal
with the system

ż1 = z2 + ψ1(t)

...

żk−1 = zk + ψk−1(t)

żk = zk+1 + Φk(u, z1, . . . , zk)

żk+1 = ϕk+1(u, z1, . . . , zk+1)

Indeed, thanks to the above observer we know in fi-
nite time the values of z1, . . . , zk, so that the function
Φk(u, z1, . . . , zk) becomes a known signal ψk(t).

From this, we can propose the following observer made
of a cascade of homogeneous observers :

˙̂z11 ∈ ŵ1 − L1 k11 S(ẑ11 − y)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

˙̂z21 = ẑ22 + Φ1(u, ẑ11) + ŵ1 − L2 k21 bẑ21 − ye
1
2

˙̂z22 ∈ ŵ2 − L2
2 k22 S(ẑ21 − y)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
...

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
˙̂zm1 = ẑm2 + Φ1(u, ẑ11)

+ŵ1 − Lm km1 bẑm1 − ye
m−1
m

...
˙̂zm(m−1) = ẑmm + Φm−1(u, ẑ(m−1)1, . . . , ẑ(m−1)(m−1))

+ŵm−1 − Lm−1
m km(m−1) bẑm1 − ye

1
m

˙̂zmm ∈ ŵm − Lmm kmm S(ẑm1 − y)

(22)
where the kij and Li are positive real numbers to be
tuned.

As a direct consequence of Proposition 4 and following
the same steps as in the proof of Proposition 3, we have
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Proposition 5 Assume Φ is continuous. For any posi-
tive real numbers z, u w, we can find positive real num-
bers kij and Li, two class K functions γ1 and γ2 and a
class KL function β such that, for all locally bounded
time function (u, v, w, ŵ), and all (z, ẑ) in Rm × Rm,
the observer (22) admits absolutely continuous solutions(
Ẑ1(ẑ, z, t;u, v, w, ŵ), ..., Ẑm(ẑ, z, t;u, v, w, ŵ)

)
which

are defined on R+ and for any such solution we have for
all i in {1, ...,m} and for all t such that |Z(z, s;u,w)| ≤ z,
|u(s)| ≤ u and |∆w(s)| ≤ w for all 0 ≤ s ≤ t:

|Ẑi(t)− Zi(t)| ≤ max
{
β(|z − ẑ|, t),

sup
1≤j≤i−1

s∈[t0,t]

{γ1(|v(s)|), γ2(|∆wj(s)|)}
}
.

where Ẑi is the state of the ith block (see Nota-

tion 2) and we have used the abbreviation Ẑi(t) =

Ẑi(ẑ, z, t;u, v, w, ŵ) and Zi(t) = Zi(z, t;u,w).
Moreover, when v(t) = ∆wj = 0, there exists T such

that Ẑi(ẑ, z, t) = Zi(z, t) for all t ≥ T .

This observer is an extension of the cascaded high gain
observer (11) presented in Section 4. The use of homo-
geneity enables here to obtain convergence without de-
manding anything but the knowledge of a bound on the
input and on the system solution. A drawback of a cas-
cade of observers is that it gives an observer with dimen-

sion m(m+1)
2 in general. However, as seen in Section 4, it

may be possible to reduce this dimension since, for each
new block, one may increase the dimension by more than
one, when the corresponding added functions Φi satisfy
P(α, a) m for some α verifying (14) with d0 = −1 and
for some a.

Finally, note that the result of Proposition 5 does not
mean that the observer is ISS with respect to ∆w. In-
deed, ∆w must be bounded to obtain this ISS-like in-
equality : the system is ISS with restrictions. Again, we
believe that this problem could be solved employing ho-
mogeneous in the bi-limit observer as in [2].

7 Relaxing the assumptions marked with ☼

First, if System (2) is not complete, every ISS inequali-
ties still holds for any solution Z(z, t;u,w) but only on
[0, T (z)[ where T (z) is its maximal time of existence.

The global aspect of boundedness, Höder, P(α, a), . . . ,
can be relaxed as follows. Let U be bounded and letM
be a given compact set. We define Φ̂, to be used instead
of Φ in the observers, as

Φ̂i(u, z1, ..., zi) = sat(Φi(u, z1, ..., zi), Φ̄i) (23)

where Φ̄i = maxu∈U,z∈M(Φi(u, z1, ..., zi)) and the satu-
ration function is defined on R by

sat(x,M) = max(min(x,M),−M) .

It can be shown that, for any compact set M̃ strictly
contained inM, there exists ã such that (3) holds for Φ̂

for all (za, zb) in Rm×M̃. Then, since Φ̂ = Φ on M̃, we
can modify the assumptions
- in Proposition 1, so that (5) holds only on the compact

setM;
- in Propositions 2 and 4, so that Φ verifies P(α, a) only

on the compact setM;
- Propositions 3 and 5 remain unchanged.

In this case, the results hold for the particular system
solutionsZ(z, t;u,w) which are in the compact set M̃ for
t in [0, T (z)[. Precisely, for these solutions, the bounds

on Ẑi(t)− Zi(t) given in these Propositions hold for all
t in [0, T (z)[.

Note also that if P(α, a) holds on a compact set, then
for any α̃ such that α̃ij ≤ αij for all (i, j), there exists
ã such that P(α̃, ã) also holds on this compact set. It
follows that the constraints given by (14) or Table 2

in Proposition 4 can be relaxed to αij ≥ 1−d0(m−i−1)
1−d0(m−j) ,

and the less restrictive conditions one may ask for are
obtained for d0 = −1.

Finally, in Propositions 1, 2 and 4, it is possible to con-
sider the case where Φ depends also on time as long as
any assumption made on Φ is satisfied uniformly with
respect to time.

8 Example

Consider the system

ẋ1 = x2 , ẋ2 = −x1 +x5
3x1 , ẋ3 = −x1x2 +u , y = x1

(24)
with u as input. It would lead us too far from the main
subject of this article to study here the solutions be-
havior of this system. We note however that, when u
is zero, they evolve in the 2-dimensional surface {x ∈
R3 : 3x2

1 + 3x2
2 + x6

3 = c6} which is diffeomorphic 5 to
the sphere S2. Thanks to Poincaré-Bendixon theory, we
know the solutions are periodic and circling the unsta-
ble equilibria (x1 = x2 = 0, x3 = ±c). So we hope for
the existence of solutions remaining in the compact set

Cr,ε =
{
x ∈ R3 : x2

1 + x2
2 ≥ ε , 3x2

1 + 3x2
2 + x6

3 ≤ r
}

for instance when u is a small periodic time function,
except maybe for pairs of input u and initial condition
(x1, x2, x3) for which resonance could occur. Moreover,
due to their periodic behavior, such solutions are likely
to have their x3 component recurrently crossing zero.

5 A diffeomorphism from the unit sphere to the set is x 7→
xρ(x) where ρ is the unique positive solution (hint: x3 ≤ 1)
of ρ6x63 + 3ρ2(1− x23) − 1 = 0
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8.1 Uniform and differential observability

On S =
{
x ∈ R3 : x2

1 + x2
2 6= 0

}
, and whatever u is, the

knowledge of the function t 7→ y(t) = X1(x, t) and there-
fore of its three first derivatives

ẏ = x2

ÿ =−x1 + x5
3x1

...
y =−x2 − 5x4

3x
2
1x2 + x5

3x2 + 5x4
3x1u

gives us x1, x2 and x3. Thus, System (24) is uniformly
observable on S. Besides, the function

H4(x) =


x1

x2

−x1 + x5
3x1

−x2 − 5x4
3x

2
1x2 + x5

3x2


is injective on S and admits the left following inverse,
defined on

{
z ∈ R4 : z2

1 + z2
2 6= 0

}
, is:

H−1
4 (z) =


z1

z2 (z3+z1)z1+

[
(z4+z2)+3|(z3+z1)bz1e

3
2 |

4
5 z2

]
z2

z21+z22


1
5


However,H4 is not an immersion because of a singularity
of its Jacobian at x3 = 0. So the system is differentially
observable of order 4 on S but not strongly. According
to [6], it admits a triangular canonical form of dimension
4 but with functions Φ maybe non Lipschitz.

8.2 Triangular form and property P(d0, c, 0)

The triangular canonical form of dimension 4 mentioned
above is

ż1 = z2

ż2 = z3

ż3 = z4 + Φ3(u, z1, z2, z3)

ż4 = Φ4(u, z)

y = z1.

(25)

where Φ3(u, z1, z2, z3) = 5u|z3 + z1|
4
5 bz1e

1
5 and Φ4 is

a continuous non-Lipschitz function the expressions of
which is complex, fortunately with no interest here. The
function Φ3 is not Lipschitz at the points on the hyper-
planes z3 = −z1 and z1 = 0 (image by H3 of points
where x3 = 0 or x1 = 0) known to be visited possibly
recurrently along solutions. This example thus falls pre-
cisely into the scope of the paper.

The function Φ4 is continuous and therefore bounded
on any compact set including H4(C̄r,ε). Besides, for ẑ3

and z3 in a compact set including H3(C̄r,ε), there exist

0 1 2 3 4 5 6 7 8 9 10
-1.5

-1

-0.5

0

0.5

1

1.5

y

x1

x2

x3

Fig. 1. Trajectory of System (24), with the noised measure-
ment y.

c1 and c3 such that

|Φ3(u, ẑ1, ẑ2, ẑ3)− Φ3(u, z1, z2, z3)|
≤ c1u|ẑ1 − z1|

1
5 + c3u|ẑ3 − z3|

4
5 .

This implies that Φ3 is Hölder with order 1
5 .

Hence the nonlinearities Φ3 and Φ4 verify the conditions
of Table 1. This implies that for L sufficiently large, con-
vergence with an arbitrary small error can be achieved
with the high gain observer (4) . However, Φ3 does not
verify the conditions of Table 2. Thus, there is no the-
oretical guarantee that the homogeneous observer (12)
with d0 = −1 will provide exact convergence.

8.3 An observer of dimension 4 ?

We consider the solution to system (24) with initial con-
dition x = (1, 1, 0) and u = 5 sin(10 t). This solution is
periodic and regularly crosses the Lipschitzness singu-
larities x3 = 0 or x1 = 0, as illustrated in Figure 1. In
the following, we use the same noised measurement y,
shown on Figure 1, in every simulation with noise. It is a
filtered gaussian noise with standard deviation σ = 0.03
and 1st order filtering parameter a = 50.

We first implement a high gain observer of dimension 4,
in the absence of noise, initialized at x̂ = (0.1, 0.1, 0),
and with the gains k1 = 14, k2 = 99, k3 = 408, k4 = 833.
As an illustration of Proposition 2, the convergence with
an arbitrary small error is achieved and is illustrated in
Table 3. However, we observe that the decrease of the
errors, especially for ez,4, is very slow compared to the
increase of the peaking and a very high gain is needed
to obtain ”acceptable” final errors. In presence of noise,
the tradeoff between final error and noise amplification
becomes very difficult : with the noised measurement of
Figure 1, the smallest final error ez,4 is 200, achieved
for L = 2. Of course, there might exist a choice of the
gains ki giving better results. But overall a high gain
observer may not be a systematic solution in practice for
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non-Lipschitz triangular systems, especially when the
solution regularly crosses the Lipschitz-singularities.

L ez,1 ez,2 ez,3 ez,4 Peaking

2 0.15 4 60 200 300

5 6 . 10−4 0.04 1.5 30 4000

8 5 . 10−5 4 . 10−3 0.25 7 1.5 . 104

10 8 . 10−6 1 . 10−3 0.1 4 3.5 . 104

15 1.5 . 10−6 3 . 10−4 0.03 2 1.2 . 105

Table 3
Decrease of the final error in the z-coordinates (ez,i = ẑi−zi)
with the gain L, with a high gain observer and in the absence
of noise.

Let us now implement an homogeneous observer of di-
mension 4 with an explicit Euler method with fixed mea-
surement and integration steps equaling 10−5, and with
the Matlab sign function. The degree is d0 = −1, and the
gains are chosen according to [16], i-e k1 = 5, k2 = 8.77,
k3 = 4.44, k4 = 1.1. For a gain L = 3, the convergence is
achieved with a final error of 8 . 10−4 on z4, even though
the Hölder restriction of Proposition 4 is a priori not sat-
isfied around z1 = 0. Unfortunately, the final errors are
heavily impacted in presence of noise, as illustrated in
Table 4. This may also come from a lack of ISS property.
Notice that the amplification of the noise by the gain L
is not as rapid as expected from the bound in Propo-
sition 4. The final errors remain nonetheless too large,
although, once again, we did not optimize our choice of
gains ki.

L ez,1 ez,2 ez,3 ez,4

2.5 0.15 3.5 30 18

3 0.15 3 35 25

4 0.1 2 25 50

5 0.1 2 30 80

6 0.1 2 35 120

Table 4
Final errors in the z-coordinates given by a homogeneous
observer of degree −1 in presence of noise.

8.4 Cascaded observers

In the absence of noise, the cascaded observers presented
in Sections 4 and 6 give similar results to the correspond-
ing observers in dimension 4, i-e arbitrary small asymp-
totic error and finite time convergence respectively. How-
ever, they seem to provide better accuracies in presence
of noise.

In the case of a high gain cascade observer, the errors, al-
though smaller than in the high gain observer of dimen-
sion 4, remain too large to consider it a viable solution.

On the other hand, the homogeneous cascade observer :

˙̂z11 = ẑ12 − L1 k11 bẑ11 − ye
2
3

˙̂z12 = ẑ13 − L2
1 k12 bẑ11 − ye

1
3

˙̂z13 ∈ −L3
1 k13 S(ẑ11 − y)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
˙̂z21 = ẑ22 − L2 k21 bẑ21 − ye

3
4

˙̂z22 = ẑ23 − L2
2 k22 bẑ21 − ye

1
2

˙̂z23 = ẑ24 + sat(g3(ẑ11, ẑ12, ẑ13))u− L3
2 k23 bẑ21 − ye

1
4

˙̂z24 ∈ −L4
2 k24 S(ẑ21 − y)

with the coefficients k1j chosen, according to [16], as
k11 = 3, k12 = 2.6, k13 = 1.1, and k2j as above, and
with the gains L1 = 2.5 and L2 = 3, gives the following
final errors :

ez,11 = 0.05, ez,12 = 0.4, ez,13 = 2.5, ez,24 = 12

Comparing to Table 4, we see that implementing an
intermediate homogeneous observer of dimension 3 en-
ables to obtain much better estimates of the first three
states zi, which are then used in the nonlinearity of the
second block, thus giving a better estimate of z4.

Unfortunately, the presented results are still unsatisfac-
tory in presence of noise, which leaves the question of the
construction of robust observers for such systems unan-
swered.

9 Conclusion

To summarize the most important ideas, we provide in
Table 9 a synthetic comparison of the four observers
studied in this paper, in the usual case where the system
state and the input are bounded.

We have shown the convergence with an arbitrary small
error of the classical high gain observer in presence of
nonlinearities verifying some Hölder-like condition. The
same result could probably be obtained for the high gain-
like observer presented in [7]. Also, for the case when this
Hölder condition is not verified, we proposed a novel cas-
caded high gain observer. Under slightly more restrictive
assumptions, we proved the convergence of an homoge-
neous observer and of its cascaded version with the help
of an explicit Lyapunov function.

Our numerical experience indicates however that to
improve the performances in presence of measurement
noise, it is very difficult to tune the gains of both high
gain and homogeneous observers, although it is slightly
simpler for the latter since smaller gains are sufficient
to ensure convergence. Simulations on our example sug-
gest that the situation may be more favorable with the
cascaded homogeneous observer. Our ISS bounds in this
paper being far too conservative, it is necessary to carry
out a finer study if we want to optimally tune the gains
of the observers. It may also be appropriate to use on-
line gain adaptation techniques since large gains should
be necessary only around the points where the nonlin-
earities are not Lipschitz. About these two aspects, we
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refer the reader to the survey in [13, Sections 3.2.2 and
3.2.3] and the references therein.

A Barbot et al’s observer

The set valued map proposed in [4] to obtain an observer
for a triangular canonical form where the functions are
only locally bounded is defined as follows. Given (ẑ, y, u),
(v1, . . . , vm) is in F (ẑ, y, u) if there exists (z̃2, ..., z̃m) in
Rm−1 such that:

v1 = z̃2 + g1(y)u

z̃2 ∈ sat(ẑ2)− k1 S(y − ẑ1)

...
vi = z̃i+1 + gi(y, z̃2, . . . , z̃i)u

z̃i+1 ∈ sat(ẑi+1)− ki S(ẑi − z̃i)
...

vm ∈ ϕm(y, z̃2, . . . , z̃m)

+gm(y, z̃2, . . . , z̃m)u− km S(ẑm − z̃m)

where sat is some saturation function.

B Proof of Lemma 1

The proof is based on the following Proposition the proof
of which is given in the following section for the case
d0 = −1 and can be found for d0 in ]− 1, 0] in [2]. This
proposition establishes that for a chain of integrator it
is possible to construct homogeneous correction terms
which provide an observer and that it is possible to con-
struct a smooth strict homogeneous Lyapunov function.

Proposition 6 For all d0 in [−1, 0], the function V de-
fined in (18) is positive definite and there exists positive

real numbers k1, . . . km, `1, . . . `m, λ̃ such that for all e in
Rm, the following holds :

max

{
∂V

∂ē
(ē) (Sm(ē) + K(ē1))

}
≤ −λ̃V (ē)

dV +d0
dV .

(B.1)

Let K̃(ē1, s) be the function defined as(
K̃(ē1, s)

)
i

= (K(ē1))i , i ∈ [1,m− 1] ,

and,

(
K̃(ē1, s)

)
m

=

{
kms , when d0 = −1

(K(ē1))m , when d0 > −1
.

Note that K̃ is a continuous (single) real-valued function
which satisfies for all ē1 in R

K(ē1) = {K̃(ē1, s) , s ∈ S(ē1)} .

Consider also the functions

η̃(ē, δ̄, v̄, s) =
∂V

∂ē
(ē)(Sm(ē) + δ̄ + K̃(ē1 + v̄, s))

+
λ̃

2
V (ē)

dV +d0
dV ,

and

γ(δ̄, v) =

m∑
i=1

|δ̄i|
dV +d0
ri+1 + |v̄|

dV +d0
r1 .

With (B.1), we invoke Lemma 3 to get the existence of
a positive real number c1 satisfying :

∂V

∂ē
(ē)(Sm(ē) + ∆ + K̃(ē1 + v̄, s))

≤ − λ̃
2
V (ē)

dV +d0
dV + c1

m∑
i=1

δ̄
dV +d0
ri+1

i + c1|v̄|
dV +d0
r1 .

This can be rewritten,

∂V

∂ē
(ē)(Sm(ē)+δ̄+K̃(ē1+v, s)) ≤ − λ̃

2(m+ 2)
V (ē)

dV +d0
dV

+

m∑
i=1

(
c1|δ̄i|

dV +d0
ri+1 − λ̃

2(m+ 2)
V (ē)

dV +d0
dV

)

+ c1|v̄|
dV +d0
r1 − λ̃

2(m+ 2)
V (ē)

dV +d0
dV .

Consequently, the result holds with λ = λ̃
2(m+2) , cδ =

cv =
(
α
c1

) r1
dV +d0

.

C Proof of Proposition 6 when d0 = −1

In this section, we denote Ei = (ei, ..., em). Let dV be
an integer such that dV > 2m− 1 and the functions Ki
recursively defined by :

Km(em) = −beme0 , Ki(ei) =

 −b`ieie
ri+1
ri

Ki+1

(
b`ieie

ri+1
ri

) .

Let Vm(em) = |em|dV
dV

and for all i in {1, . . . ,m− 1}, let

also V̄i : R2 → R and Vi : Rn−i+1 → R be the functions
defined by

V̄i(ν, ei+1) =

∫ ν

bei+1e
ri
ri+1

bxe
dV −ri
ri − bei+1e

dV −ri
ri+1 dx ,

Vi(Ei) =

i∑
j=m−1

V̄j(`jej , ej+1) + Vm(em) .

With these definitions, the Lyapunov function V defined
in (18) is simply V (e) = V1(e) and the homogeneous
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High gain (4) High gain cascade (11) Homogeneous (12) Homogeneous cascade
(22)

Assumption
on gi

Hölder with order greater
than in Table 1

Continuous Hölder with order greater
than in (14) or Table 2 for
d0 = −1

Continuous

Convergence Arbitrary small error Arbitrary small error Asymptotic convergence Asymptotic convergence

Advantages Easy choice of gains No constraint on gi Not necessarily large
gains because conver-
gence

No constraint on gi, con-
vergence, apparently bet-
ter in terms of noise

Drawbacks Large gains necessary to
obtain small error ⇒ nu-
merical problems (peak-
ing) and sensitivity to
noise

Same as for high gain,
but also gains difficult to
choose and large dimen-
sion

Implementation of the
sign function if d0 = −1
(chatter etc)

Large dimension and a
lot of gains to choose

Table 5
Comparison between observers when the system state and the input are bounded.

vector field K(e1) = K1(e1) with

ki = `
ri+1
ri

i `

ri+1
ri−1

i−1 ... `
ri+1
r2

2 `
ri+1
r1

1 .

Note that the jth component of Ki is homogeneous of
degree rj+1 = m− j and, for any ei in R, the set Ki(ei)
can be expressed as

Ki(ei) = {K̃i(ei, s) , s ∈ S(ei)} ,

where K̃i : R×[−1, 1]→ R is a continuous (single valued)
function.

The proof of Proposition 6 is made iteratively from i =
m toward 1. At each step, we show that Vi is positive
definite and we look for a positive real number `i, such
that for all Ei in Rn−i+1

max
s∈S(ei)

{
∂Vi
∂Ei

(Ei)(Sm−i+1Ei + K̃i(ei, s))

}
≤ −ciVi(Ei)

dV −1

dV , (C.1)

where ci is a positive real number. The Proposition will
be proved once we have shown that the former inequality
holds for i = 1.

Step i = m : At this step, Em = em. Note that we have

max
s∈S(em)

{
∂Vm
∂Em

(Em)K̃m(em, s)

}
= −|Em|dV −1 ,

= −cmVm(Em)
dV −1

dV ,

with cm = d
dV −1

dV

V . Hence, equation (C.1) holds for i = m.

Step i = j : Assume Vj+1 is positive definite and assume
there exists (`j+1, . . . , `m) such that (C.1) holds for j =

i−1. Note that the function x 7→ bxe
dV −rj
rj −bei+1e

dV −rj
rj+1

is strictly increasing, is zero iff x = bej+1e
rj
rj+1 , and

therefore has the same sign as x−bej+1e
rj
rj+1 . Thus, for

any ej+1 fixed in R, the function ν 7→ V j(ν, ej+1) is non

negative and is zero only for v = bej+1e
rj
rj+1 . Thus, V̄j

is positive and we have

Vj(Ej) = 0⇔

{
Vj+1(Ej+1) = 0

V j(`jej , ej+1) = 0

⇔

{
Ej+1 = 0

`jej = bej+1e
rj
rj+1 = 0

so that Vj is positive definite.

On another hand, let Ṽj(ν,Ej+1) = Vj+1(Ej+1) +
V̄j(ν, ej+1) and let T1 be the function defined

T1(ν,Ej+1) = max
s∈S(ν)

{
T̃1(ν,Ej+1, s)

}
with T̃1 continuous and defined by

T̃1(ν,Ej+1, s) =
∂Ṽj
∂Ej+1

(Ej+1)(Sm−i−1Ei+1 +

K̃j+1(bνe
rj+1
rj , s)) +

cj+1

2
Ṽj(ν,Ej+1)

dV −1

dV .

Let also T2 be the continuous real-valued function de-
fined by

T2(v,Ej+1) = −∂Ṽj
∂ν

(ν,Ei+1)(ej+1 − bνe
rj+1
rj ) .

Note that T1 and T2 are homogeneous with weight rj for
ν and ri for ei and degree dV − 1. Besides, they verify
the following two properties :

- for all Ej+1 in Rm−j , ν in R
T2(ν,Ej+1) ≥ 0
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(since (bνe
rj+1
rj −ej+1) and (bνe

dV −rj
rj −bej+1e

dV −rj
rj+1 )

have the same sign)
- for all (ν,Ej+1) in Rm−j+1 \ {0}, and s in S(ν), we

have the implication

T2(ν,Ej+1) = 0 ⇒ T̃1(ν,Ej+1, s) < 0

since T2 is zero only when bνe
rj+1
rj = ej+1 and

T̃1(bej+1e
rj+1
rj , Ej+1, s) =

∂Vj+1

∂Ej+1
(Ej+1)(Sn−iEj+1 + K̃j+1(ej+1, s))

+
cj+1

2
Vj+1(Ej+1)

dV −1

dV ≤ −cj+1

2
Vj+1(Ej+1)

dV −1

dV ,

where we have employed (C.1) for i = j − 1.

Using Lemmas 4 in Appendix D, there exists `j such that

T1(ν,Ej+1)− `jT2(ν,Ej+1) ≤ 0 , ∀ (ν,Ej+1) .

Finally, note that

max
s∈S(ei)

{
∂Vj
∂Ej

(Ej)(Sm−j+1Ej + K̃j(ej , s))

}
=

T1(`jej)− `jT2(`jej , Ej+1)− cj+1

2
Vj(Ej)

dV −1

dV

Hence, (C.1) holds for i = j.

D Technical lemmas

Lemma 2 Let η be a continuous functions defined on
Rn+1 and f a continuous function defined on Rn. Let C
be a compact subset of Rn. Assume that, for all x in C
and s in S(f(x)),

η(x, s) < 0 .

Then, there exists α > 0 such that for all x in C and s in
S(f(x))

η(x, s) < −α .

PROOF. Assume that for all k > 0, there exists xk in
C and sk in S(f(xk)) ⊂ [−1, 1] such that

0 > η(xk, sk) ≥ −1

k
.

Then, η(xk, sk) tends to 0 when k tends to infinity. Be-
sides, there exists a subsequence (km) such that xkm
tends to x∗ in C and skm tends to s∗ in [−1, 1]. Since η
is continuous, it follows that η(x∗, s∗) = 0 and we will
have a contradiction if s∗ ∈ S(f(x∗)). If f(x∗) is not
zero, then by continuity of f , s∗ is equal to the sign of
f(x∗), and otherwise, s∗ ∈ [−1, 1] = S(f(x∗)). Thus,
s∗ ∈ S(f(x∗)) in all cases.

Lemma 3 Let η be a function defined on Rn homoge-
neous with degree d and weight vector r = (r1, ..., rn),
and V a positive definite proper function defined on Rn

homogeneous of degree dV with same weight vector r. De-
fine C = V −1({1}). If there exists α such that for all x
in C

η(x) < α ,

then for all x in Rn \ {0}, η(x) < αV (x)
d
dV .

PROOF. Let x in Rn \ {0}. We have x̄ =
xi

V (x)
ri
dV

in

C. Thus η(x̄) < α and by homogeneity

1

V (x)
d
dV

η(x) < α

which gives the required inequality.

Lemma 4 Let η be a homogeneous function of degree d
and weight vector r defined on Rn by

η(x) = max
s∈S(f(x))

η̃(x, s)

where η̃ is a continuous function defined on Rn+1 and f a
continuous function defined on Rn. Consider a continu-
ous function γ homogeneous with same degree and weight
vector such that, for all x in Rn \ {0} and s in S(f(x))

γ(x) ≥ 0 ,

γ(x) = 0 ⇒ η̃(x, s) < 0 .

Then, there exists k0 > 0 such that, for all x in Rn \{0},
η(x)− k0 γ(x) < 0 .

PROOF. Define the homogeneous definite positive

function V (x) =

n∑
i=1

|xi|
d
ri and consider the compact set

C = V −1({1}). Assume that for all k > 0, there exists
xk in C and sk in S(f(xk)) such that

η̃(xk, sk) ≥ k γ(xk) ≥ 0

η̃ is continuous, and thus bounded on the compact set
C × [−1, 1]. Therefore, γ(xk) tends to 0 when k tends to
infinity. Besides, there exists a subsequence (km) such
that xkm tends to x∗ in C and skm tends to s∗ in [−1, 1].
It follows that γ(x∗) = 0 since γ is continuous. But with
the same argument as in the proof of Lemma 2, we have
s∗ ∈ S(f(x∗)). It yields that η̃(x∗, s∗) < 0 by assumption
and we have a contradiction.

Therefore, there exists k0 such that

η̃(x, s)− k0 γ(x) < 0

for all x in C and all s in S(f(x)). Thus, with Lemma 2
there exists α > 0 such that

η̃(x, s)− k0 γ(x) ≤ −α
so that

η(x)− k0 γ(x) < 0
for any x in C. The result follows applying Lemma 3.

14



Lemma 5 For a positive bounded continuous function
t 7→ c(t) and an absolutely continuous function t 7→ ν(t)
satisfying

for almost all t such that ν(t) ≥ c(t) then ν̇(t) ≤ −ν(t)d

with d in ]0, 1[. Then, for all t in [0, T [

ν(t) ≤ max
{

0,max{ν(0)− c(0), 0}1−d − t
}1/(1−d)

+ sup
s∈[0,t]

c(s) .

PROOF. This is a direct consequence of the fact that
we have for almost all t such that max{ν(t)−c, 0}) is C1

˙︷ ︷
max{ν(t)− c, 0} ≤ −max{ν(t)− c, 0}d
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