I. E. Agency, World Energy Outlook [2] , Co2 emissions from fuel combustion highlights 2016 Key trend in CO2 emission from fuel combustion, Key World Energy Statistics, p.12, 2015.

H. Andersen, T. Larsen, and . Boomsma, Long-term forecasting of hourly electricity load: Identication of consumption proles and segmentation of customers, Energy Conversion and Management, pp.244-252, 2013.

H. Andersen, R. Larsen, H. Gaardestrup-andersen, N. Larsen, R. Juul et al., Long term forecasting of hourly electricity consumption in local areas in Denmark Applied Energy Dierentiated long term projections of the hourly electricity consumption in local areas, pp.147-162, 2013.

N. Bassamzadeh and R. Ghanem, Multiscale stochastic prediction of electricity demand in smart grids using Bayesian networks, Applied Energy, vol.193, pp.369-380, 2017.
DOI : 10.1016/j.apenergy.2017.01.017

]. K. Boroojeni, M. H. Amini, S. Bahrami, S. Iyengar, A. I. Sarwat et al., A novel multi-time-scale modeling for electric power demand forecasting: From short-term to medium-term horizon, Electric Power Systems Research, pp.142-58, 2017.

S. S. Amini and . Iyengar, Optimal twotier forecasting power generation model in smart grids, CoRR, abs/1502, p.530, 2015.

E. Commission, Benchmarking smart metering deployment in the EU-27 with a focus on electricity, 2014.

R. De-transport-d-'électricité, Bilan prévisionnel de l'équilibre ore-demande d'électricité en france, 2016, ch. Consommation d'électricité en France, p.40

J. Dickert and P. Schegner, Residential load models for network planning purposes , in 2010 Modern Electric Power Systems, p.16, 2010.

N. Ding, Load models for operation and planning of electricity distribution networks with metering data, theses, 2012.

Y. Goude, R. Nedellec, and N. Kong, Local Short and Middle Term Electricity Load Forecasting With Semi-Parametric Additive Models, IEEE Transactions on Smart Grid, vol.5, issue.1, p.440446, 2014.
DOI : 10.1109/TSG.2013.2278425

M. Jin, W. Feng, P. Liu, C. Marnay, and C. Spanos, MOD-DR: Microgrid optimal dispatch with demand response, Applied Energy, vol.187, pp.758-776, 2017.
DOI : 10.1016/j.apenergy.2016.11.093

K. Le-zhou, S. Lin-yang, and C. Shen, A review of electric load classication in smart grid environment, Renewable and Sustainable Energy Reviews, p.110, 2013.

V. Lefieux21, ]. E. Mckenna, I. Richardson, and M. Thomson, Modèles semi-paramétriques appliqués à la prévision des séries temporelles Cas de la consommation d'électricité Smart meter data: Balancing consumer privacy concerns with legitimate applications, 807814. [22] F. McLoughlin, A. Duffy, and M. Conlon, A clustering approach to domestic electricity load prole characterisation using smart metering data, Applied Energy, pp.41-141, 2007.

A. Mutanen, M. Ruska, S. Repo, and P. Jarventausta, Customer classication and load proling method for distribution systems, IEEE Transactions on Power Delivery, vol.26, p.17551763, 2011.
DOI : 10.1109/tpwrd.2011.2142198

R. Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, 2015.

J. D. Rhodes, W. J. Cole, C. R. Upshaw, T. F. Edgar, and M. E. Webber, Clustering analysis of residential electricity demand proles, pp.461-471, 2014.

T. Räsänen, D. Voukantsis, H. Niska, K. Karatzas, and M. Kolehmainen, Data-based method for creating electricity use load profiles using large amount of customer-specific hourly measured electricity use data, Applied Energy, vol.87, issue.11, pp.3538-3545, 2010.
DOI : 10.1016/j.apenergy.2010.05.015

A. Seppälä, Load research and load estimation in electricity distribution, theses, Technical research center of Finland, 1996.

E. P. Service, Smart electricity grids and meters in the EU Member States, European Parliament, 2015.

Z. Shao, F. Chao, S. Yang, and K. Zhou, A review of the decomposition methodology for extracting and identifying the uctuation characteristics in electricity demand forecasting, Renewable and Sustainable Energy Reviews, 2016.

Z. Shao, F. Gao, Q. Zhang, and S. Yang, Multivariate statistical and similarity measure based semiparametric modeling of the probability distribution: A novel approach to the case study of mid-long term electricity consumption forecasting in China, Applied Energy, vol.156, pp.156-502, 2015.
DOI : 10.1016/j.apenergy.2015.07.037

J. L. Viegas, S. M. Vieira, R. Melício, V. Mendes, and J. M. Sousa, Classication of new electricity customers based on surveys and smart metering data, Energy Region Year 2 categories 8 categories 9 categories 12 categories Blois, 2010.