Z. Ma, P. Cooper, D. Daly, L. Ledo, L. G. Swan et al., Existing building retrofits: Methodology and state-of-the-art, Energy Build3] European Parliament Modeling of end-use energy consumption in the residential sector: A review of modeling techniques, Off. J. Eur. Union Dir. Renew. Sustain. Energy Rev, vol.55, issue.13, pp.889-902, 2009.

M. Kavgic, A. Mavrogianni, D. Mumovic, A. Summerfeld, Z. Stevanovic et al., Djurovic-Petrovic, A review of bottomup building stock models for energy consumption in the residential sector, Build. Environ, vol.456, pp.1683-1697, 2010.

É. Mata, A. Sasic-kalagasidis, F. France, . Germany, . Spain et al., Building-stock aggregation through archetype buildings A differentiated description of building-stocks for a georeferenced urban bottom-up building-stock model, Energy Build, pp.270-282, 2014.

R. Nouvel, M. Zirak, V. Coors, and U. Eicker, The influence of data quality on urban heating demand modeling using 3D city models, Computers, Environment and Urban Systems, vol.64, 2017.
DOI : 10.1016/j.compenvurbsys.2016.12.005

G. Dall-'o-', A. Galante, and M. Torri, A methodology for the energy performance classification of residential building stock on an urban scale, Energy Build, 2012.

I. Theodoridou, M. Karteris, G. Mallinis, A. M. Papadopoulos, and M. Hegger, Assessment of retrofitting measures and solar systems' potential in urban areas using Geographical Information Systems: Application to a Mediterranean city, Renewable and Sustainable Energy Reviews, vol.16, issue.8, pp.6239-6261, 2012.
DOI : 10.1016/j.rser.2012.03.075

]. A. Mastrucci, O. Baume, F. Stazi, and U. Leopold, Estimating energy savings for the residential building stock of an entire city: A GIS-based statistical downscaling approach applied to Rotterdam, Energy and Buildings, vol.75, issue.11, pp.75-358, 2014.
DOI : 10.1016/j.enbuild.2014.02.032

B. Howard, L. Parshall, C. Thompson, S. Hammer, J. Dickinson et al., Spatial distribution of urban building energy consumption by end use, Energy Build, pp.45-141, 2012.

]. S. Moffatt and S. Aggregation, Methods for Evaluating the Environmental Performance of Building Stocks, 2004.

W. Tian, A review of sensitivity analysis methods in building energy analysis, Renewable and Sustainable Energy Reviews, vol.20, pp.411-419, 2013.
DOI : 10.1016/j.rser.2012.12.014

A. T. Booth, R. Choudhary, and D. J. Spiegelhalter, Handling uncertainty in housing stock models, Building and Environment, vol.48
DOI : 10.1016/j.buildenv.2011.08.016

A. T. Booth and R. Choudhary, Decision making under uncertainty in the retrofit analysis of the UK housing stock: Implications for the Green Deal, Energy Build Uncertainty and modeling energy consumption: Sensitivity analysis for a city-scale domestic energy model, Energy Build, pp.292-308, 2013.

]. G. Mauro, M. Hamdy, G. P. Vanoli, N. Bianco, and J. L. Hensen, A new methodology for investigating the costoptimality of energy retrofitting a building category, Energy Build, pp.456-478, 2015.

F. Branger, L. Giraudet, C. Guivarch, P. Quirion, J. Keirstead et al., Global sensitivity analysis of an energy?economy model of the residential building sector, Environ. Model. Softw A review of urban energy system models: Approaches, challenges and opportunities, Renew. Sustain. Energy Rev, vol.70, issue.16, pp.45-54, 2012.

A. N. Aijazi and L. R. Glicksman, Comparison of regression techniques for surrogate models of building energy performance, ASHRAE IBPSA-USA SimBuild 2016 -Build. Perform. Model, Conf, pp.327-334, 2016.

]. A. Foucquier, S. Robert, F. Suard, L. Stéphan, and A. Jay, State of the art in building modelling and energy performances prediction: A review, Renewable and Sustainable Energy Reviews, vol.23, 2013.
DOI : 10.1016/j.rser.2013.03.004

H. Wang and Z. , Advances in building simulation and computational techniques: A review between 1987 and 2014, Energy and Buildings, vol.128, pp.319-335, 1987.
DOI : 10.1016/j.enbuild.2016.06.080

H. Zhao and F. Magoules, A review on the prediction of building energy consumption, Renewable and Sustainable Energy Reviews, vol.16, issue.6, pp.3586-3592, 2012.
DOI : 10.1016/j.rser.2012.02.049

URL : https://hal.archives-ouvertes.fr/hal-00802029

]. A. Saltelli, M. Ratto, T. Andres, F. Campolongo, J. Cariboni et al., Global Sensitivity Analysis, The primer, 2008.
DOI : 10.1002/9780470725184

URL : http://media.wiley.com/product_data/excerpt/74/04700599/0470059974.pdf

K. J. Lomas and H. , Sensitivity analysis techniques for building thermal simulation programs, Energy and Buildings, vol.19, issue.1, pp.21-44, 1992.
DOI : 10.1016/0378-7788(92)90033-D

S. De-wit and G. Augenbroe, Analysis of uncertainty in building design evaluations and its implications, Energy Build, pp.951-95810, 2002.

I. A. Macdonald and J. A. Clarke, Applying uncertainty considerations to energy conservation equations, Energy Build, pp.1019-1026, 2007.
DOI : 10.1016/j.enbuild.2006.11.008

A. S. Silva and E. Ghisi, Uncertainty analysis of user behaviour and physical parameters in residential building performance simulation, Energy Build, 2014.

T. Pettersen, Variation of energy consumption in dwellings due to climate, building and inhabitants, Energy Build, pp.209-218, 1994.

Y. Yamaguchi, J. L. Hensen, Y. Shimoda, T. Asai, and M. Mizuno, District level energy management using a bottom-up modeling approach, Ninth Int. IBPSA Conf, pp.1385-1392, 2005.

]. A. Saltelli, M. Ratto, S. Tarantola, and F. Campolongo, Sensitivity analysis practice: A guide to scientific models, 2004.
DOI : 10.1002/0470870958

M. D. Morris, Factorial Sampling Plans for Preliminary Computational Experiments, Technometrics, vol.1, issue.2, pp.161-174, 1991.
DOI : 10.2307/1266468

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

F. Zhao, S. H. Lee, and G. Augenbroe, Reconstructing building stock to replicate energy consumption data, Energy Build, pp.301-312, 2016.
DOI : 10.1016/j.enbuild.2015.10.001

P. Padey, R. Girard, D. Boulch, and I. Blanc, From LCAs to Simplified Models: A Generic Methodology Applied to Wind Power Electricity, Environmental Science & Technology, vol.47, issue.3, 2012.
DOI : 10.1021/es303435e

URL : https://hal.archives-ouvertes.fr/hal-00771401

C. Marini and I. Blanc, Towards Prospective Life Cycle Assessment: How to Identify Key Parameters Inducing Most Uncertainties in the Future? Application to Photovoltaic Systems Installed in Spain, Lect. Notes Comput. Sci. (Including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics, pp.8581-2014
DOI : 10.1007/978-3-319-09150-1_51

URL : https://hal.archives-ouvertes.fr/hal-01019873

C. Marini, P. Padey, I. Blanc, and D. L. Boulch, Assessing the prospective environmental impacts of photovoltaic systems based on a simplified LCA model, in: SETAC Eur, SETAC Eur. 24th Annu. Meet, pp.2014-2055

M. Lacirignola, B. Meany, P. Padey, and I. Blanc, A simplified model for the estimation of life-cycle greenhouse gas emissions of enhanced geothermal systems, Geothermal Energy, vol.13, issue.5
DOI : 10.1016/j.rser.2008.08.004

URL : https://hal.archives-ouvertes.fr/hal-01074839

]. S. Cucurachi and R. Heijungs, Characterisation factors for life cycle impact assessment of sound emissions, Science of The Total Environment, vol.468, issue.469, pp.468-469
DOI : 10.1016/j.scitotenv.2013.07.080

P. Azadi, G. Brownbridge, S. Mosbach, O. Inderwildib, and M. Kraft, Simulation and life cycle assessment of algae gasification process in dual fluidized bed gasifiers, Green Chem., vol.33, issue.135, pp.1793-1801, 2015.
DOI : 10.1016/0273-1223(96)00478-7

I. Kioutsioukis, S. Tarantola, A. Saltelli, and D. Gatelli, Uncertainty and global sensitivity analysis of road transport emission estimates, Atmospheric Environment, vol.38, issue.38, 2004.
DOI : 10.1016/j.atmosenv.2004.08.006

]. Y. Mery, L. Tiruta-barna, E. Benetto, and I. Baudin, An integrated ???process modelling-life cycle assessment??? tool for the assessment and design of water treatment processes, The International Journal of Life Cycle Assessment, vol.220, issue.2???3, pp.1062-1070, 2013.
DOI : 10.1016/j.desal.2007.01.021

Y. Mery, L. Tiruta-barna, I. Baudin, E. Benetto, and E. Igos, Formalization of a technical procedure for process ecodesign dedicated to drinking water treatment plants, Journal of Cleaner Production, vol.68, 2014.
DOI : 10.1016/j.jclepro.2014.01.011

URL : https://hal.archives-ouvertes.fr/hal-01268637

A. Andrianandraina, T. Ventura, B. Senga-kiess-?-?, R. Cazacliu, H. M. Idir et al., Sensitivity Analysis of Environmental Process Modeling in a Life Cycle Context: A Case Study of Hemp Crop Production, Journal of Industrial Ecology, vol.140, issue.1-2, pp.978-993, 2015.
DOI : 10.1007/s10681-004-4750-2

URL : https://hal.archives-ouvertes.fr/hal-01199422

]. N. Heeren, C. L. Mutel, B. Steubing, Y. Ostermeyer, H. Wallbaum et al., Environmental Impact of Buildings???What Matters?, Environmental Science & Technology, vol.49, issue.16, pp.9832-9841, 2015.
DOI : 10.1021/acs.est.5b01735

]. P. Iooss and B. , Lemaître, A review on Global Sensitivity Analysis methods, in: Uncertain. Manag. Simulation- Optimization Complex Syst, pp.101-122

]. A. Mastrucci, A. Marvuglia, E. Popovici, U. Leopold, and E. Benetto, Geospatial characterization of building material stocks for the life cycle assessment of end-of-life scenarios at the urban scale, Resources, Conservation and Recycling, vol.123, 2016.
DOI : 10.1016/j.resconrec.2016.07.003

J. Off, . Du-gd, R. Du-luxemb, A. Nouvel, U. Mastrucci et al., A ? N° 99 Combining GIS-based statistical and engineering urban heat consumption models: Towards a new framework for multi-scale policy support, Energy Build, 2014.

E. Cen and . Iso, Energy performance of buildings -Calculation of energy use for space heating and cooling, 2008.

]. R. Bon, Allometry in the Topologic St ructure of Architectural Spatial Systems, Ekistics, pp.36-270, 1973.

P. Steadman, S. Evans, and M. Batty, Wall area, volume and plan depth in the building stock, Building Research & Information, vol.36, issue.5-6, pp.455-467, 2009.
DOI : 10.1080/01446190600601966

]. A. Merzkirch, T. Hoos, S. Maas, F. Scholzen, and D. Waldmann, Wie genau sind unsere Energiepässe?: Vergleich zwischen berechneter und gemessener Endenergie in 230 Wohngebäuden in Luxemburg Wie genau sind unsere Energiepässe?, Bauphysik, vol.36, pp.40-43, 2014.

O. Guerra-santin, L. Itard, and H. Visscher, https://www.r-project.org The effect of occupancy and building characteristics on energy use for space and water heating in Dutch residential stock, Energy Build, pp.1223-1232, 2009.

B. Peuportier, S. Thiers, and A. Guiavarch, Eco-design of buildings using thermal simulation and life cycle assessment, Journal of Cleaner Production, vol.39, 2013.
DOI : 10.1016/j.jclepro.2012.08.041

URL : https://hal.archives-ouvertes.fr/hal-00769797

R. Nouvel, C. Schulte, U. Eicker, D. Pietruschka, and V. Coors, Citygml-Based 3D City Model for Energy Diagnostics and Urban Energy Policy Support, Proc. BS2013 13th Conf, pp.218-225, 2013.

J. Z. Kolter and J. Ferreira, A Large-scale Study on Predicting and Contextualizing Building Energy Usage, Proc. Conf

]. N. Schüler, A. Mastrucci, A. Bertrand, J. Page, and F. , Heat demand estimation for different building types at regional scale considering building parameters and urban topography, Energy Procedia, pp.78-3403, 2015.

M. Lacirignola, P. Blanc, R. Girard, and P. , LCA of emerging technologies: addressing high uncertainty on inputs' variability when performing global sensitivity analysis, Science of The Total Environment, vol.578, pp.268-280, 2017.
DOI : 10.1016/j.scitotenv.2016.10.066

URL : https://hal.archives-ouvertes.fr/hal-01398080

M. Stein, Large Sample Properties of Simulations Using Latin Hypercube Sampling, Technometrics, vol.17, issue.2, pp.143-151, 1987.
DOI : 10.2307/3212960

A. Franklin, J. Ghodsi, S. Gonzalez, I. Shenker, and . Stoica, Apache Spark: a unified engine for big data processing