
Modeling of dynamic and post-dynamic recrystallization by
coupling a full field approach to phenomenological laws

Ludovic Mairea,∗, Benjamin Scholtesa, Charbel Moussaa, Nathalie Bozzoloa, Daniel
Pino Muñoza, Amico Settefratib, Marc Bernackia

aMINES ParisTech, PSL - Research University, CEMEF - Centre de mise en forme des matriaux, CNRS
UMR 7635, CS 10207 rue Claude Daunesse 06904 Sophia Antipolis Cedex, France.

bTransvalor S.A., 694 avenue Maurice Donat, 06250 Mougins, France

Abstract

This paper describes a level set framework for the full field modeling of dynamic and

post-dynamic recrystallization in a 3D polycrystalline material with an accurate de-

scription of grains topology at large deformation and application to 304L austenitic

stainless steel. Topological evolutions are simulated based on a kinetic law linking the

velocity of the boundaries to the thermodynamic driving forces. Recrystallization is

modeled by coupling a level set approach to phenomenological laws describing strain

hardening mechanism and nucleation criteria. Although the proposed formalism does

not consider crystal plasticity because of its computational costs, it enables to reach

outstanding dynamic recrystallization computations in a front-capturing finite element

framework comparatively to the state of art.
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1. Introduction

Hot deformation of metals is responsible of a wide range of phenomena occurring

in the microstructure. At high temperatures, the dislocation density is the result of a

competition between the increase of the amount of dislocations due to plastic work and

its decrease due to dynamic recovery. In general, the increase is faster than the de-5

crease and the dislocation density globally goes up. Once a critical dislocation density

is locally reached, the recrystallization mechanism (i.e. nucleation of recrystallized

grains) occurs in the microstructure. These recrystallized grains have a low energy

compared to the deformed ones. Because of stored energy gradients between recrystal-

lized and non-recrystallized grains, recrystallized grains grow by consuming deformed10

grains. Simultaneously, dislocation density increases in the recrystallized grains be-

cause of plastic deformation. Capillarity effects (leading to the decrease of the total

grain boundaries surface) are also present and play a role regarding the evolution of

multiple junctions. All these mechanisms acting during hot deformation lead to the

so-called discontinuous dynamic recrystallization process (DDRX) [1, 2, 3, 4] which15

is the classical dynamic recrystallization (DRX) mechanism for low/medium stacking

fault energy (SFE) metallic materials such as the 304L austenitic steel considered for

application in this work. If the plastic deformation is stopped and the material is still at

high temperature, grain boundary migration is still active because of stored energy gra-

dients and capillarity effects. Furthermore, the nucleation mechanism can still occur in20

some hardened grains. These mechanisms appearing after hot deformation lead to the

so-called post-dynamic recrystallization process (PDRX)[5, 6]. A review of dynamic

recrystallization phenomena occurring in metals has been recently proposed in [4].

Since many decades, phenomenological recrystallization models have been proposed25

like the well-known Avrami relationship aiming to describe the global recrystallized

fraction during hot deformation [7, 8, 9]. Many years later, new recrystallization mod-

els emerged with the intention to implicitly describe the microstructure by considering

spherical grains [10, 11, 12, 13, 14]. In these models, each physical mechanism is de-

scribed by a physical or phenomenological law. Grains evolve by computing a velocity30
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between each grain and the averaged microstructure: these kinds of models are often

called mean field models. The main advantage of these models is related to the fact

that they provide good results in terms of recrystallized fraction or mean grain size and

they also provide additional information in terms of grain size distribution and disloca-

tion density distribution. However, the topology of grains and the interactions between35

neighboring grains cannot be described using mean field models. Thus several assump-

tions on the grain mean curvature or on nucleation sites can considerably limit their use.

In parallel, finer approaches called full field models have emerged in the last decades.

These approaches consider a complete description of the microstructure at the poly-40

crystal scale, which makes the modeling of local phenomena such as abnormal grain

growth possible. A review of the most significant numerical methods is given in [15].

Probabilistic voxel-based approaches such as Monte Carlo [16, 17] and cellular au-

tomata [18, 19] are very popular. These models consider uniform grids composed of

cells to model microstructure and stochastic laws to predict the motion of interfaces.45

These simulations are efficient in term of computational cost and the scalability is ex-

cellent. On the other hand, deterministic approaches, based on the resolution of partial

differential equations, are more accurate in the description of the involved physical

mechanisms although they are numerically more expensive. For instance, the vertex

approach [20] is based on an explicit description of interfaces in terms of vertices. In-50

terfaces motion is imposed at each increment by computing the velocity of a set of

points. A major drawback of this approach is related to the complexity of handling all

the possible topological events, such as disappearance and appearance of new grains,

which is not straightforward especially in 3D. Other deterministic approaches avoid

these topological problems since they are based on an implicit description of the in-55

terfaces: the phase-field [21, 22] and the level set (LS) method [23, 24]. The major

limitation of these two methods is generally the computational cost but recent improve-

ments of this weakness should be emphasized [22, 25]. LS simulations in context of

regular grids and Fourier transform resolution can be found for grain growth [26, 27]

and for static recrystallization [25] modeling. When global or local meshing/remeshing60

operations have to be considered (large deformation, accuracy in the grain interfaces,
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presence of second phase particles...), LS approach in context of unstructured finite

element (FE) mesh has to be considered [24, 28, 29, 30, 31, 32]. The numerical LS

framework developed in [32] is considered and enhanced for DRX modeling in the

following.65

Several DRX models based on a full field approach exist in the literature. In the last

decades, [33] has already proposed a 2D model of DRX based on the cellular automata

method for interfaces tracking and phenomenological laws to describe hardening and

nucleation mechanisms. More recently in [30], a 2D model considering a FE based LS70

approach is proposed to model DRX. In [34], a coupled crystal plasticity and cellular

automata approach has been developed to model DRX in a titanium alloy. In [35],

a combined crystal plasticity and vertex model is proposed in 2D to model DRX for

large deformation. In [36], a coupled crystal plasticity and cellular automata approach

is used in 2D to model DRX in magnesium alloys. In [37], a 3D model based on75

the phase-field method coupled with a fast Fourier transform based elasto-viscoplastic

model is proposed to model DRX in copper. In [38], a 2D cellular automata model has

been used to model DRX in Inconel 718 alloy. In [39], a coupled crystal plasticity and

cellular automata approach has been proposed in 3D for modeling DRX in titanium

alloys. In [40], a 2D cellular automata model coupled to phenomenological laws for80

strain hardening, recovery and nucleation mechanisms, has been developed to predict

microstructural evolutions in a magnesium alloy during hot deformation. In parallel,

several analytical models have been recently proposed in order to simulate DRX as a

function of the input process conditions [41, 42, 43, 44].

Although literature already provides a large number of papers on full field DRX mod-85

els, a major drawback is the difficulty to handle grains topology and morphology for

large deformation (for instance ε > 0.2), which is a major limitation since many in-

dustrial processes go well further in deformation. Furthermore, crystal plasticity is

generally used in full field DRX models since it predicts accurately the local evolution

of dislocation density at the polycrystal scale. However, the use of crystal plasticity of-90

ten leads to prohibitive computational costs. Finally, most of DRX full field models are

developed in 2D because of numerical issues and computational costs. Microstructural
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evolutions present a three-dimensional character, therefore results obtained from 2D

models may not be representative of a real 3D process. Some limitations of 2D models

are related to the location of nuclei, their initial size or growth rates.95

In the present work, a 3D-FE model based on the LS method in context of unstructured

tetrahedral mesh is proposed to model the DRX and PDRX phenomena with applica-

tion to 304L steel. This model is able to describe grain topology at large deformation

(for instance ε > 2) with relatively low computational costs. The equations proposed100

and validated in a mean field model [13, 12] are used in this model to simulate the

nucleation, work hardening and recovery mechanisms while the LS approach coupled

to a remesher provides an accurate tracking of interfaces (i.e. grain boundaries) all

along the simulation. The first section of the paper introduces the modeling of the

grain boundaries network and grain boundary kinetic. This section is followed by the105

presentation of the main constitutive equations of the models. Then, a sensitivity study

of optimal model parameters (mesh size, initial number of grains, deformation step,

time step and critical nucleus radius) on microstructural responses of the model is in-

vestigated. The subsequent section presents a comparison between our full field model

and a mean field model of the literature [12] in given thermomechanical conditions.110

2. Microstructure and grain boundary migration

2.1. Representation of the initial grain boundaries network and energy field

The model considered in this paper is based on a LS description of the interfaces

within a FE framework [24, 29, 30, 15]. First, grain interfaces are virtually generated

by using the Voronoı̈ tessellation or Laguerre-Voronoı̈ method [45, 46, 47, 48, 49]. The115

virtual interfaces are then described into an unstructured FE mesh thanks to LS func-

tions (see appendix A for more details about the generation of the grain boundaries

network and appendix B for an introduction of the LS method in the considered poly-

crystalline framework).

120
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A 3D digital microstructure representative of 304L steel has been generated according

to a Laguerre-Voronoı̈ algorithm and using the LS approach within a FE framework.

The grain size follows a log-normal distribution and result is presented in Fig. 1(a).

The mean grain radius 〈R〉 and the standard deviation σR of the distribution are 60µm

and 10µm, respectively. The color code corresponds to the equivalent spherical grain125

radius. The number of grains in the Representative Volume Element (RVE) is around

8000, the number of mesh elements is around 3.5M and 22 LS functions are used.

20 45 70 95 120 

Equivalent grain radius (μm) 

(a)

1e-7 1.1e-4 2.2e-4 3.3e-4 4.4e-4 

Energy ( J.mm-3 ) 

(b)

Figure 1: 3D digital microstructure generated according to a Laguerrre-Voronoı̈ algorithm following a Log-

normal distribution (〈R〉= 60 µm; σR= 10 µm). (a) Color code corresponds to the equivalent spherical grain

radius. (b) Color code corresponds to the energy field considered constant per grain and generated from a

Gaussian distribution (〈E〉= 1e-5 J.mm−3; σE= 2e-4 J.mm−3).

At the initial stage of the simulation, an energy field considered constant per grain is

defined in the microstructure. This energy field can be generated either according to

a particular distribution (Gaussian, log-normal, bimodal) or from experimental data.130

In the case presented in Fig. 1(b) representative of 304L steel, an initial energy field

6



is generated from a Gaussian distribution. The mean energy 〈E〉 and the standard

deviation σE of the distribution are 1e-5 J.mm−3 and 2e-4 J.mm−3, respectively. An

energy field E is related to a dislocation density field ρ and vice versa according to the

following relation :135

E = τρ, (1)

where τ represents the dislocation line energy and is considered as material dependant.

2.2. Grain boundary migration

As detailed in the introduction, during a process at high temperature, grain interfaces

migrate due to the stored energy gradient across the interface and due to the grain

boundary mean curvature which is the sum of the main curvatures in the 3D case.140

Grain boundary migration is modelled in the considered model by using the strategy

adopted in [32]. Since we used the formalism of equations proposed and validated in

[13, 12], we also made, although this consideration has not at yet a clear physical sense,

the velocity term dependent on the strain rate by considering an additional term δ (ε̇)

into the velocity formula (see appendix C for more details concerning the modeling of145

the grain boundary migration kinetic and about the term δ (ε̇)).

3. Dynamic and post-dynamic recrystallization modeling

3.1. Strain hardening and recovery mechanisms

During plastic deformation, dislocations density increases in the microstructure due

to strain hardening, resulting in an increase of the stored energy. However, a part of150

dislocations can also annihilate due to dynamic recovery. The strain hardening and

recovery mechanisms appearing during hot deformation, can be modeled at different

scales: at a local scale with crystal plasticity [35, 36, 50] or at a macroscopic scale

with phenomenological laws [51, 52, 53]. In this model, phenomenological laws are

considered to limit the computational cost of the 3D simulations, thus none resolution155

of a mechanical problems is considered. The deformation is simply modeled by apply-

ing a normal velocity on different faces of the RVE so as to respect a given strain rate

7



and a velocity gradient. Each mesh node is thus displaced according to these veloci-

ties. During deformation, the faces of the RVE remain plane (homogeneous material

assumption) and the volume conservation of the RVE is ensured (incompressible ma-160

terial).

Considering NG grains in the microstructure, the averaged dislocation density field

obtained from Eq. 1 in each grain j noted 〈ρj〉, is assumed to evolve according to the

Yoshie-Laasraoui-Jonas law [53] :165

∂ 〈ρj〉
∂ε

p
eff

= K1−K2〈ρj〉, (2)

where ε
p
eff denotes the effective plastic strain, K1 and K2 are two constants which rep-

resent the strain hardening and dynamic recovery term, respectively. At each time

increment, this differential equation is solved with an Euler explicit method, i.e. :

〈ρj〉(t+∆t)−〈ρj〉t
∆ε

= K1−K2〈ρj〉t, (3)

where ∆ε is equal to ε̇
p
eff×∆t with ∆t the time step, which leads to the final equation :

〈ρj〉(t+∆t) = K1∆ε +(1−K2∆ε)〈ρj〉t. (4)

When a grain boundary migrates, the swept area is almost free of defects, i.e. dislocations-170

free. This phenomenon is traduced by a decrease of the dislocation density in growing

grains. Thus a minimal dislocation density ρ0, which is material dependant, is at-

tributed to swept areas. Then the new dislocation density is averaged in each grain

following the equation :

〈ρj〉(t+∆t)V (t+∆t) = 〈ρj〉tV t +∆V ρ0, (5)

where ∆V represents the swept volume between the instants t and (t +∆t). Fig. 2175

shows the evolution of a dislocation density field in a grain between t and (t +∆t) due

to strain hardening, dynamic recovery and grain boundary migration mechanisms.
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Figure 2: 2D scheme illustrating the evolution of a dislocation density field of a single grain due to the

mechanisms of strain hardening and dynamic recovery(from (a) to (b)), grain boundary migration(from (b)

to (c)) and decrease of dislocation density due to boundary migration(from (c) to (d)) between the instants t

and (t +∆t) of the simulation.
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The PDRX mechanism is taken into account after deformation by modeling the mi-

gration of grain boundaries (see section 2.2.), the decrease of dislocation density due

to boundary migration given by Eq. 5 and the static recovery due to annihilation of180

dislocations given by Eq. 6 :

˙〈ρj〉=−Ks〈ρj〉, (6)

where Ks is a temperature dependant parameter which represents the static recovery

term and a superposed dot denotes differentiation with respect to time. During PDRX,

no nucleation of recrystallized grains is considered, thus the following section on nu-

cleation only concerns DRX mechanism.185

The mean flow stress σj in the jth grain is computed during deformation from its aver-

age dislocation density 〈ρj〉 using the Taylor equation :

σj = σ0 +αµb
√
〈ρj〉, (7)

where σ0 is a dislocations-free yield stress and α is a constant. Then the total flow

stress 〈σ〉 is calculated as a volume average of the flow stresses in all grains :190

〈σ〉= ∑σjVj

Vtot
. (8)

3.2. Nucleation mechanism

When enough energy is accumulated in the material due to plastic deformation, some

dislocation networks can develop within grains and tend to form new recrystallized

grains called nuclei, mainly located at grain boundaries [54]. Different criteria need to

be verified locally in order to obtain a substructure that becomes a nucleus: a mobile195

high-angle grain boundary has to be formed by the nucleation event, a high stored en-

ergy gradient across the interface must be present in order to provide enough positive

driving pressure for counter the capillarity effects applied on the nucleus. In the con-

sidered framework, as γb is assumed isotropic, only the stored energy and the critical

nucleus radius is taken into account for nucleation event.200
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3.2.1. Nuclei location

The adopted strategy concerning the creation of new nuclei in a FE-LS framework

is based on the recent developments of Scholtes et al. [32]. In the considered model,

we assume that new nuclei of critical radius r∗ only appear close to grain boundaries.

This restriction is taken into account by forcing the centers of new nuclei inside a layer205

±L around the interfaces, where L = r∗ (see Fig. 3 for more details).

2L 

. 
. 

. 
. 

Spherical nuclei allowed to appear

Spherical nuclei prohibit to appear

Grain boundary

Figure 3: Examples of nuclei that are allowed (green color) and prohibit (red color) to appear depending on

the distance from the grain boundary to their centers.
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3.2.2. Critical stored energy for nucleation

In the considered model, we assume that a new nucleus can appear if the averaged

stored energy in its appearance area reaches a critical value ρcr (see Fig. 4). This

restriction is taken into account by averaging the energy in the volume occupied by210

the nucleus before its appearance, and by verifying if this averaged energy reaches ρcr.

(see Fig. 4 for more details). If this condition is verified and if its position satisfies the

condition presented previously, the new nucleus can be created with a stored energy

ρ0.

2L 

. 

. 
. 

. 

Spherical nuclei allowed to appear

Spherical nuclei prohibit to appear

ρ = 4ρcr

ρ = ρcr/2

Grain boundary

Figure 4: Examples of nuclei allowed (green) and prohibit (red) to appear depending on whether the averaged

stored energy in the volume occupied by each nucleus before its appearance reached the critical dislocation

density ρcr.
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Concerning the computing of ρcr, a first approximation is made and an iterative calcu-215

lation of ρcr is done according to the following equation [13] :

ρcr =

−2γbε̇
K2

Mbδ (ε̇)τ2

ln
(

1− K2

K1
ρcr

)


1/2

, (9)

where Mb is the grain boundary mobility and γb is the grain boundary energy.

The influence of the temperature on ρcr is taken into account in Eq. 9 thanks to the220

parameters K2 and Mb while the influence of the strain rate on ρcr is taken into account

in Eq. 9 thanks to the parameters K1, K2, ε̇ and δ (ε̇). It is assumed that ρcr increases

when decreasing temperature or increasing strain rate.

3.2.3. Nucleus critical radius225

When a new nucleus appears in the microstructure, its critical radius must be high

enough so that its stored energy counters the capillarity forces applied by the neighbor-

ing grains. This corresponds to the condition when the stored energy of the material is

large enough to overcome the capillarity effects exerted by neighboring grains on the

nucleus. This condition is approximated by the so-called Bailey-Hirsch criterion [55] :230

r∗ = ω
2γb

ρcrτ
, (10)

where ω > 1 is a safety factor ensuring that the created nucleus has a required driving

force for growth. Indeed the Eq. 10 with ω = 1 is based on the assumption that a new

nucleus is perfectly spherical but in the present model, depending on the mesh size,

the nucleus cannot be perfectly spherical, which justifies the use of the safety factor ω .

The value of ω will be investigated in the section 4.235
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3.2.4. Nucleation rate

The nucleation rate V̇ representing a volume of nuclei per unit of time, is calculated

according to a variant of the proportional nucleation model of Peczak and Luton [56] :

V̇ = KgΦ∆t, (11)

where Kg(T,ε̇) is a probability coefficient related to the thermo-mechanical conditions,

i.e. the temperature and the effective plastic strain rate and Φ represents the total240

boundary area (in a necklace-type nucleation) or total volume (in a bulk-type nucle-

ation) of grains verifying ρi > ρcr.

For better understanding of the coupling between LS method and recrystallization gov-

erning laws, a flow chart summarizing the resolution method of the present model for245

a given process time is presented in Fig. 5.
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DRX ?

ρ > ρcr?

Update of ρcr,K1,K2,

Update of ve due

solving sets of
Grain boundary migration by

convective-diffusive equations

Update of Ks,Mb, δ(ε̇) and ∆t

Kg,Mb, δ(ε̇) and ∆t

Lagrangian deformation of the RVE

Update of energy fields due to
boundary migration

to energy gradients

Input time, ε̇, T

START

END

Update of Φ, V̇ and r∗

Nucleation

Hardening and dynamic recovery using YLJ law
ρ̇ = (K1 −K2ρ)ε̇

Static recovery
ρ̇ = −Ksρ

PDRX

DRX ?
PDRX

PDRX
DRX ?

Remeshing ?

Isotropic remeshing

t+∆t < tinc

Yes
No

Yes
No

Yes
No

Yes
No

Yes
No

Yes
No

Figure 5: Scheme describing the resolution method of the present model for a given process time, strain rate

ε̇ and temperature T.
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4. Sensitivity study of the present model

The DRX and PDRX model considered many parameters which have to be cor-

rectly initialized in order to model as accurately as possible the microstructural mech-

anisms, while keeping relatively low computational costs. This section is dedicated to250

a sensitivity study of initial parameters leading to converged results of DRX (see 4.1.)

and then PDRX (see 4.2.).

4.1. Dynamic recrystallization

An identification of the optimal mesh size, initial number of grains, deformation

step and critical nucleus radius of the DRX model leading to converged results while255

keeping low computational costs is done in this section.

Mesh size

A single nucleus is considered and the mesh size is calibrated so as to obtain a good de-

scription of this nucleus in terms of surface and volume. The isotropic mesh size must260

be small enough to correctly describe the nucleus mean curvature but also reasonable

in order to limit the computational cost. Thus four spherical nuclei of radius 20µm

are generated using four different mesh sizes and results are presented in Fig. 6. The

quantity ξ corresponds to the ratio between the nucleus radius r∗ and the mesh size and

is reported below each nucleus in Fig. 6. The quantity Ev corresponds to the L1 error265

between the volume of the generated nucleus of radius r∗ (presented in Fig. 6) and the

volume of a sphere of radius r∗. The error between the surfaces is also measured and

noted Es. These values are reported below each nucleus in Fig. 6.
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(a) ξ = 1.0, Ev = 31%, Es = 27% (b) ξ = 1.5, Ev = 7.7%, Es = 7.1%

(c) ξ = 2.1, Ev = 4.3%, Es = 4, 3% (d) ξ = 2.6, Ev = 2.8%, Es = 2.5%

Figure 6: Four nuclei generated according to different mesh sizes. ξ corresponds to the ratio between the

nucleus radius r∗ and the mesh size. Ev (resp. Es) corresponds to the L1 error between the volume (resp.

surface) of the generated nucleus and the volume (resp. surface) of a sphere of same radius.

It is observed that in each case, the Ev error is close to the Es error. The nucleus pre-

sented in Fig. 6(a) has large Ev and Es errors (31% and 27%, respectively). The three270

other nuclei presented in Fig. 6(b), (c) and (d) give Ev and Es errors lower than 10%,

leading to a better description of the nuclei in these three cases. A ratio ξ ' 2 be-

tween the nucleus radius and the mesh size is chosen as a good compromise between a

minimum number of mesh elements into the nucleus and low Ev and Es errors. Thus,

the future number of mesh elements in the simulations will always be chosen so as to275

respect a ratio ξ ' 2.

Initial number of grains

Several full field simulations of DRX have been performed using the considered model

for a temperature of 1273◦K and a strain rate of 0.01s−1 during 300s. The deformation280

of the RVE is idealized at each increment by updating all mesh nodes coordinates at
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the instant t +∆t thanks to the relations :

xt+∆t = xt,

yt+∆t = (1+ ε̇∆t)yt,

zt+∆t = (1− ε̇∆t)zt,

(12)

with (xt;yt;zt) and (xt+∆t;yt+∆t;zt+∆t) the coordinates of a mesh node at the instants t

and t+∆t respectively, considering the (0,~x,~y,~z) Cartesian coordinate system (see Fig.

7), ε̇ the strain rate following the direction of solicitation (i.e. direction~z) and ∆t the285

time increment. These equations lead to an idealized channel-die case, where the six

faces remain plane during the simulated process. Computations were performed on

three nodes of 24 CPU processors each in order to compare computational costs. The

variation of the initial number of grains is done by keeping the same initial mean grain

radius (' 60µm) and by varying the RVE size (from 0.14mm3 to 0.34mm3). The safety290

factor ω (Eq. 10) is taken equal to 2, leading to a critical nucleus radius of 7µm. The

mesh size is fixed to 3µm in order to validate the ratio ξ ' 2. The step deformation is

taken low enough (2%) to ensure a good convergence of calculations. Microstructures

are presented in Fig. 7 and results in terms of recrystallized fraction, mean grain radius,

mean dislocation density, computational cost, grain radius distribution and dislocation295

density distribution are plotted in Fig. 8. The mean grain radius 〈Rvol〉 and the mean

dislocation density 〈ρvol〉 are weighted by grain volume. The distributions are plotted

for a true deformation ε = 1. Only grains from 0 to 12 µm have been considered in Fig.

8(e) since these grains represent more than 99% of the total number of grains in the

microstructure. It is clearly observed that a total of 8 grains in the initial microstructure300

leads to results as close as with a number of 20 or 40 grains (see Fig. 8). Indeed our

nucleation model considers a random nucleation on high energy grain boundaries. So

during the DRX mechanism when all grains have a sufficient energy, nuclei will appear

everywhere at every interfaces and the total number of grains rapidly increases in the

microstructure, reducing the influence of the initial number of grains in this case. Two305

simulations with two different initial number of grains (8 and 27 grains) and exactly

the same initial grain radius distribution and energy distribution are presented in Fig. 7.
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It is clearly observed for a deformation ε = 1.5 that the volumic fractions of nuclei are

similar in the two cases. Thus it is assumed that the accuracy of the results is sufficient

with an initial number of 8 grains.310
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(a) ε = 0
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Figure 7: Two simulations using two different initial number of grains : 8 inital grains for a true deformation

ε = 0 (a) and ε = 1.5 (b). 27 initial grains for a true deformation ε = 0 (c) and ε = 1.5 (d). The simulated

process is a channel-die configuration at 1273◦K and a strain rate of 0.01s−1 during 150s.
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Furthermore, using 8 initial grains instead of 40 initial grains reduces the computational

cost by a factor of 9, which is a non negligible time saving (see Fig. 8(d)). An initial

number of 3 grains has also been tested. However, this small number of grains lead

to artefacts (important influence of the boundary conditions, a too small number of315

grains to respect precisely the input grain size distribution and an insufficient total

grain boundary surface for the appearance of new grains after few time increments)

and therefore to non-physical results, in particular concerning the distributions (see

Fig. 8(e) and (f)). Thus, a minimum initial number of 8 grains will be chosen for all

the future simulations.320
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Figure 8: Sensitivity of the initial number of grains on polycrystal results: (a) recrystallized fraction, (b)

mean grain radius, (c) mean dislocation density, (d) computational cost, (e) grain radius distributions for a

true deformation ε = 1 and (f) dislocation density distributions for a true deformation ε = 1. The simulated

process is a channel-die compression at 1273◦K, at a strain rate of 0.01s−1 during 300s. The mean values

are weighted by grain volume for a better representativeness of the curves at the onset of recrystallization.
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Deformation step

The strain hardening and recovery laws are directly related to the deformation step (see

Eq.2). Therefore a fixed time step is not enough to ensure convergence for any strain

rate since the deformation step is given by the product between the time step and the

strain rate. Thus, the idea of this section is to look for a deformation step that leads to325

converged results and then to use this ideal deformation step to deduce the associated

time step.

According to the previous study, the initial number of grains is now fixed to 8

grains. The safety factor ω and the mesh size are still fixed and equal to 2 and 3µm,

respectively. To investigate the optimal deformation step, several simulations were330

done for four deformation steps (2%;5%;10%;20%). The same results as the previ-

ous section (i.e. recrystallized fraction, mean grain radius, mean dislocation density,

computational cost, grain radius distribution and dislocation density distribution) have

been investigated in Fig. 9. When the deformation step decreases, results (recrystal-

lized fraction, mean dislocation density, mean grain radius, grain radius distribution335

and dislocation density distribution) converge toward the same trends. The computa-

tional cost is reduced by a factor of about 2 between 2% and 5% of deformation step

while keeping close results (see computational cost in Fig. 9(d)). Thus a deformation

step of 5% is chosen as a good compromise for all the future simulations.

340

Critical nucleus radius

The initial number of grains and deformation step are fixed to 8 and 5% respectively,

and the influence of the critical nucleus radius, more particularly the safety factor noted

ω and used in Eq. 10, is thereafter investigated. Four different values for ω are tested

(1;1.5;2;3) leading to the use of four different mesh sizes in order to respect the ratio345

ξ ' 2. The same results as the previous section (i.e. recrystallized fraction, mean grain

radius, mean dislocation density, computational cost, grain radius distribution and dis-

location density distribution) have been investigated in Fig. 10. First, it is observed

that the final mean grain radius 〈Rvol〉 and the grain radius distribution are highly influ-

enced by the critical nucleus radius r∗. This observation is important because it means350

that the final mean grain radius can be directly influenced by the safety factor ω . By
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Figure 9: Sensitivity of the deformation step on polycrystal results: (a) recrystallized fraction, (b) mean

grain radius, (c) mean dislocation density, (d) computational cost, (e) grain radius distributions for a true

deformation ε = 1 and (f) dislocation density distributions for a true deformation ε = 1. The simulated

process is a channel-die compression at 1273◦K, at a strain rate of 0.01s−1 during 300s. The mean values

are weighted by grain volume for a better representativeness of the curves at the onset of recrystallization.
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observing the four other curves, it is clearly observed that a safety factor of 1 does

not lead to converged results. This is due to the fact that a safety factor of 1 leads to

a critical nucleus radius too low to counter capillarity effects exerted by neighboring

grains and thus the new nuclei do not survive, which explains the observed kinetic of355

recrystallized fraction. In contrast, the two safety factors of 1.5 and 2 lead to a good

convergence of all presented results. Finally, a safety factor of 3 does not lead to con-

verged results in terms of recrystallized fraction and mean dislocation density because

the critical nucleus radius is too large using this value and therefore results predicted by

the model might be non-physical. Thus a safety factor of 1.5 is chosen as the optimal360

value for the future simulations.
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Figure 10: Sensitivity of the critical nucleus radius on polycrystal results: (a) recrystallized fraction, (b)

mean grain radius, (c) mean dislocation density, (d) computational cost, (e) grain radius distributions for a

true deformation ε = 1 and (f) dislocation density distributions for a true deformation ε = 1. The simulated

process is a channel-die compression at 1273◦K, at a strain rate of 0.01s−1 during 300s. The mean values

are weighted by grain volume for a better representativeness of the curves at the onset of recrystallization.
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4.2. Post-dynamic recrystallization

Time step

The second convergence study concerns the ideal time step (∆t) used for PDRX sim-

ulations. If the displacement of a grain boundary is too high during ∆t, the kinetic365

cannot be correctly captured. Thus, a solution is to adapt ∆t as a function of a maxi-

mum displacement of grain boundaries. Let’s consider the maximum displacement of

an interface dmax in a microstructure between t and (t +∆t). This latter is given by the

maximum velocity vmax in the microstructure between these two instants times the time

increment ∆t :370

dmax = vmax×∆t. (13)

Furthermore, the highest value for vmax is reached if the smallest possible grain having

the highest possible mean energy is surrounded by the largest possible grain having the

lowest possible mean energy. Thus by using classical approximations for grain mean

curvature, vmax is estimated as follow :

vmax 'Mb

(
2γb

〈R〉 +∆E
)
, (14)

where ∆E = Emax - Emin. In context of anisotropy of Mb and/or γb, the same methodol-375

ogy could be used by using in Eq.14 the maximum values of these physical parameters.

Finally by combining Eqs. 13 and 14, the max displacement dmax is estimated at each

step time by :

dmax 'Mb

(
2γb

〈R〉 +∆E
)
×∆t. (15)

Then, it is necessary to find the ideal maximum displacement of grain boundaries in

order to determine the time step ∆t at each increment thanks to Eq. 15. In this study,380

we choose to defined the ideal maximum displacement dmax as a percentage of mesh

size and this choice is validated in the following.
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4.2.1. Validation of the criterion for time step

To be representative of the PDRX mechanism, we assume four different simulations385

each representing a nucleus growing in a matrix (see Fig. 11). Each simulation is

related to particular thermomechanical conditions (i.e. a couple of ◦K and ε̇) leading

to a given critical nucleus radius r∗ (by using Eq. 10) and leading to a maximum

dislocation density field in the matrix computed by the ratio K1/K2 which is the steady

state dislocation density according to Eq. 2 (since K1 and K2 depend on ◦K and ε̇).390

Furthermore, a dislocation density field ρ0 = 1e11 m−2, which is material dependant,

is defined into the nucleus. We note RP the ratio between the stored gradient energy

(∆E) and the capillarity effect (2γb/r∗). For each case, the mesh size is chosen so as to

keep the ratio ξ between the nucleus radius and the mesh size approximatively equal

to 2 as demonstrated in the DRX sensitivity study of the previous section.395

(a) t = 0s (b) t = 50s
  1e-7 

5e-4 

Energy ( J.mm-3 ) 

1.25e-4 

2.5e-4 

3.75e-4 

Figure 11: Growth of a nucleus immersed in a matrix. The critical nucleus radius is equal to 5.2 µm. The

energy in the nucleus and in the matrix are 1.47e-7 J.mm−3 and 4.9e-4 J.mm−3, respectively.

Different percentages of mesh size from 10% to 40% are investigated as maximum

displacement dmax. In every cases, the evolution of the nucleus radius obtained by the

numerical simulations is confronted to the analytical solution presented below :

r(t+∆t) = rt +Mb∆t
(

∆E− 2γb

rt

)
, (16)

The L2 errors between the analytical solution and the numerical results are plotted in
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Fig. 12 for each case corresponding to a particular couple of thermomechanical condi-400

tions.

First, it is observed in Fig. 12 that the lowest errors are obtained for cases where the

gradient stored energy term is dominant (i.e. highest values of RP). This observation is

logical and can be easily explained. The stored energy gradient term computed in the405

simulation is exact whereas the nucleus mean curvature is estimated by the Laplacian

of the distance function and thus is mesh size dependant. Furthermore, as the mesh

size is actually isotropic and non-refined around the interface, a non-negligible error

can appear on the capillarity term in the simulation. Thus when the stored energy gra-

dient is preponderant compared to the capillarity effects (i.e. high values of RP), the410

error made on the estimation of the mean curvature is of second order in the velocity

term and lower errors are observed with respect to the analytical solution.

Furthermore for a given nucleus size, the errors are observed dependant on the percent-

ages of mesh size displacement (see Fig. 12). It is observed that the minimum errors415

are globally obtained for the mesh size displacements of 10%, 20% or 30%. For a very

small displacement, the error due to the transport equation resolution of the LS method

(see section 2.2.) can be relatively high compared to the small displacement of the

interface, which can globally leads to inaccurate results. This aspect can explain that

the 10%-case is globally less accurate than the 20%-case. For a large displacement (i.e.420

40% of mesh size), the value of displacement seems too high during a single step time

and thus the kinetic cannot be correctly captured. Indeed, our FE methodology remains

of first order in time and important displacement during one time step can lead to non-

physical results. Finally, 10%, 20% or 30% of mesh sizes give better results than 40%

of mesh size. However, for reasons of computational costs, we will retain a maximum425

displacement of mesh size dmax equal to 30% for the future PDRX simulations.
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Figure 12: L2 Error on the equivalent mean grain radius evolution between the full field simulation and the

scheme defined by Eq. 16. r∗ is the critical nucleus radius. Rp is the ratio between the velocity due to

capillarity effects and the velocity due to the stored energy gradient. Each color corresponds to a specific

displacement of mesh size performed at each increment of the model.

5. Results and comparisons with a mean field model

5.1. Dynamic recrystallization

This paper proposes a numerical framework based on phenomenological laws from

an existing mean field model [13, 12] for nucleation criteria, hardening and recovery.430

However, contrary to mean field models, this model presents the advantage to fully

describe, in time and space, the grain boundary network thanks to the level set ap-

proach for the modeling of grain boundary motion. Therefore, the idea of this section

is to compare the above-mentioned mean field model of the literature [13, 12] with

30



this full field model in order to observe the influence of respecting the topology of the435

microstructure. The considered mean field model [12, 13] is based on a discrete repre-

sentation of the microstructure composed of classes of spherical grains having a radius

Ri, an averaged dislocation density 〈ρi〉 and a number of grains. The classes are also

separated into non-recrystallized and recrystallized classes.

The governing laws of hardening, recovery and nucleation mechanisms are iden-440

tical in the two considered mean field and full field models. The main limitation of

the mean field model remains in the grain topology and the direct interactions between

grains which is approximated while being explicitly considered in the full field model.

Thus, we assume that the full field model is more accurate than the mean field model

in the following comparisons.445

The thermomechanical conditions considered in the two models are a hot deformation

of a 304L steel at 1273◦K and under a strain rate of 0.01s−1. The duration process

is 300s in order to achieve a steady-state regime. In the same manner as previous

simulations, a channel-die compression test is considered in the following full field450

simulation. The set of parameters used in the governing laws of the two models as well

as the characteristics of the initial microstructures are representative of the considered

304L steel and are summarized in Tabs. 1 and 2, respectively [13, 57]. A number of

8 initial classes is considered in the mean field model since this low number of initial

classes has shown same results as a large number of initial classes. The characteristics455

Ri and 〈ρi〉 of these 8 classes are identical to the characteristics of the 8 initial grains

considered in the full field simulation. The number of grains Ni in each class of the

mean field model is chosen in order to respect the input distribution.

K1 K2 Kg Ks M0 δ (ε̇) γb τ Qm

Unity m−2 m/s s−1 m4/(J.s) J/m2 J/m J/mol

Values 1.1e15 3.3 3.28e-8 0.001 1.56e-1 1.07 0.6 1.47e-9 2.8e5

Table 1: Set of parameters used in governing laws of both mean field and full field models for the considered

304L steel [13, 57]. The deformation conditions associated to these parameters are the following : T =

1273◦K; ε̇ = 0.01s−1.
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〈R〉 σR 〈ρv〉 σρ

Unity µm µm m−2 m−2

Values 60 10 6.5e13 1.25e13

Table 2: Characteristics of the initial microstructure generated by the Voronoı̈ tessellation algorithm and the

associated energy field constant per grain generated from a Gaussian distribution.

The full field simulation was performed on 3 nodes of 24 CPU processors. Four differ-

ent instants of the full field simulation are presented in Fig. 13 with a color code corre-460

sponding to the energy field constant per grain. The initial RVE measures 0.2mm3 and

is composed of 8 grains at the early stage of the simulation while around 9000 grains

are present in the RVE at the end of the simulation.
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Figure 13: Four instants of a DRX simulation using the present full field model. The simulated process is a

channel-die compression at 1273◦K at a strain rate of 0.01s−1 during 300s. Initial microstructure is composed

of 8 grains while around 9000 grains are present at the end of deformation. Color code corresponds to the

energy field constant per grain.
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Homogenized results in terms of mean dislocation density 〈ρvol〉, mean grain radius465

〈R〉, mean grain radius weighted by grain volume 〈Rvol〉 and recrystallized fraction are

confronted between the two models in Fig. 14. First it is observed that the evolutions

of the mean grain radius 〈R〉 predicted by the two models are similar during all the

process duration (see Fig. 14(c)) and final values are slightly higher than the critical

nucleus radius (r∗ = 5.2µm). The decrease of 〈R〉 at the onset of recrystallization (ε '470

0.4) is very fast and thus difficult to capture (see Fig. 14(c)), thus the mean grain radius

weighted by volume 〈Rvol〉 is also plotted in Fig. 14(d). During the first minutes of

process (up to ε = 1), the recrystallized fraction, 〈Rvol〉 and 〈ρvol〉 evolutions are quasi

similar between the two models (see Fig. 14(a), (b), (d)). However, for a true defor-

mation ε > 1, the kinetics are always faster for the full field results, meaning that the475

number of nuclei appearing in the microstructure is always larger in the full field case.

A first cause explaining this difference can be the evolution of grain boundary surfaces

from equiaxed to ellipsoidal shape, increasing the surface of grain boundaries and con-

sequently increasing the nucleation rate in the full field case (Eq. 11). Another cause

explaining this difference is the quantity γRX presented in Fig. 14(f) and investigated480

in the following.

The quantities called γNR and γRX (see [12] for more information about the calcu-

lation of these quantities) represent respectively the mobile surface fraction of non-

recrystallized grains in contact with recrystallized grains and vice versa. These two485

quantities are used in the mean field model in order to calculate the grow rates of re-

crystallized and non-recrystallized grains. These quantities can be estimated from the

full field simulation and compared with those computed in the mean field model. To

estimate these quantities in the full field simulation, the surface fraction of each non-

recrystallized grain in contact with a recrystallized grain is calculated and averaged to490

get the quantity γNR and vice versa for γRX. These values are measured at each instant

of the full field simulation and are compared to the mean field model in Fig. 14(e) and

(f). First, the increase of γNR observed in Fig. 14(e) is quiet similar for the two models.

Furthermore, this evolution is very fast from the moment where nuclei appear (ε ' 0.4).

This fast increase is logical since nucleus mainly appear at grain boundaries, thus most495
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of non-recrystallized grains are in contact with RX grains as soon as nucleation starts.

The decrease of γRX observed in Fig. 14(f) is perfectly similar for the two models up

to a true deformation ε ' 0.9. After this instant, the decrease of γRX is much faster in

the mean field model. The quantity γRX is used in the mean field model to calculate

the growth rate of nuclei, thus a faster decrease of γRX in the mean field case is a cause500

of the slower evolution of the recrystallized fraction, 〈ρvol〉 and 〈Rvol〉 predicted by the

mean field model (see Fig. 14(a), (b) and (d)).
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Figure 14: Comparisons of the macroscopic results obtained during a DRX process using the present full

field model and a mean field model of the literature [12]. Compared results are: (a) recrystallized fraction

weighted per grain volume, (b) mean dislocation density weighted by grain volume, (c) mean grain size,

(d) mean grain size weighted by grain volume, (e) averaged surface fraction of non-recrystallized grains in

contact with recrystallized grains and (d) averaged surface fraction of recrystallized grains in contact with

non-recrystallized grains. The simulated process is a channel-die compression at 1273◦K, at a strain rate of

0.01s−1 during 300s.
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Grain radius distributions and dislocation density distributions are also compared be-

tween the two models at four instants of the simulations (see Fig. 15 and Fig. 16). The

grain radius distributions are represented in volume fraction since after few seconds505

of deformation, the number of nuclei is much higher than the number of initial grains.

Thus a number fraction is not a discerning method to follow at the same time the small

and large grains. The class width of histograms is 3µm for the grain radius distribu-

tions and 5e13m−2 for the dislocation density distributions.

510

The grain radius distributions predicted by the two models have still some similarities

for a true deformation ε = 1 (see Fig. 15(b)). However, for a true deformation ε = 2,

a volume fraction of large grains is observed in the mean field simulation whereas in

the full field simulation, the microstructure is fully recrystallized and these large grains

have disappeared (see. Fig. 15(c) and (d)). This difference is still due to the quantity515

γRX which decreases faster in the mean field case, leading to the fact that nuclei slowly

growth at the expense of the non-recrystallized grains than in the full field case. Finally,

a single narrow peak is observed in the mean field simulation for a true deformation ε

= 3 at the steady-state regime whereas a larger peak is observed in the full field simu-

lation (see Fig. 15(d)).520

Concerning the dislocation density distributions, the shapes of the curves are close for

the three instants ε = 1, ε = 2 and ε = 3 of process (see Fig. 16(b), (c) and (d)). At each

of these instants, the curves of the full field simulation have a more pronounced peak

than in the mean field simulation.525
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Figure 15: Comparisons, at different instants, of the grain radius distributions ((a) to (d)) obtained during a

DRX process using the present full field model and a mean field model of the literature [12]. The simulated

process is a channel-die compression at 1273◦K, at a strain rate of 0.01s−1 during 300s.
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Figure 16: Comparisons, at different instants, of the dislocation density distributions ((a) to (d)) obtained

during a DRX process using the present full field model and a mean field model of the literature [12]. The

simulated process is a channel-die compression at 1273◦K, at a strain rate of 0.01s−1 during 300s.
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5.2. Post-dynamic recrystallization

A PDRX simulation is then considered using the two models in order to compare

the results. To avoid accumulating differences from DRX, the initial state of the mi-

crostructure used in both models corresponds to the final state microstructure obtained

after a DRX simulation using the present full field model (see the subsection 5.1.). The530

PDRX process is simulated by considering a 304L steel maintained at 1273◦K during

25min. The first two minutes of PDRX are presented in Fig. 17. It is observed a large

decrease of energy in the material during the first minutes of PDRX. After these few

minutes, the preponderant mechanism is the capillarity driven grain growth mechanism

since the energy is low in the material and thus only the mean curvature of grains plays535

a primordial role on the pressure acting in the grain interfaces.
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Figure 17: Three instants of the PDRX simulation using the present full field model. The simulated process

is a heat treatment at 1273◦K during 25min. Initial microstructure is composed of 9000 grains while around

600 grains are present at the end of the heat treatment. Color code corresponds to the mean energy per grain.
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Comparisons of mean dislocation density 〈ρvol〉, mean grain radius 〈R〉 and mean grain

radius weighted by grain volume 〈Rvol〉 between the two models are presented in Fig.

18. The results obtained according to the two models are close. The evolutions of the540

curves are very pronounced at the early stage of the simulation since the energy is still

high in the material. After few minutes, the energy is much more low in the material

(see Fig. 17) and thus the grain boundary kinetic slows down, which is characterized

by a slow evolution of 〈R〉 and 〈Rvol〉 after this instant in Fig. 18(b) and (c).
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Figure 18: Comparisons of the macroscopic results obtained during a PDRX simulation using the present

full field model and a mean field model of the literature [12]. Compared results are: (a) mean dislocation

density weighted by grain volume, (b) mean grain size and (c) mean grain size weighted by grain volume.

The simulated process is a heat treatment at 1273◦K during 25min.
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The grain radius distributions and dislocation density distributions are also presented545

and compared in Figs. 19 and 20. After 10 min of PDRX, the grain radius distribution

is still very close between the two simulations (see Fig. 19(b)). However, after 20 min

of PDRX, a single higher peak is appearing on the grain radius distribution of the mean

field simulation (see Fig. 19(c)) and this peak is still observed after 25min of PDRX

(see Fig. 19(d)). In the full field simulation, this single higher peak is not observed550

during the simulation. Globally, it is observed that the grain radius distribution is poorly

described by the mean field model. Concerning the dislocation density distributions,

the results are identical in the two simulations since the energy quickly decreases in the

material and thus after 10min of PDRX, all the grains have the same low energy and a

single narrow peak is observed in the two models (see Fig. 20).555
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Figure 19: Comparisons, at different instants, of the grain radius distributions ((a) to (d)) obtained during a

PDRX process using the present full field model and a mean field model of the literature [12]. The simulated

process is a heat treatment at 1273◦K during 25min.
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Figure 20: Comparisons, at different instants, of the dislocation density distributions ((a) to (d)) obtained

during a PDRX process using the present full field model and a mean field model of the literature [12]. The

simulated process is a heat treatment at 1273◦K during 25min.
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6. Conclusions

In the present work, a robust 3D model based on the LS method within a FE frame-

work coupled to analytical laws has been presented to model the DRX and PDRX

phenomena occurring during and after hot deformation of metals respectively. The

advantages of the considered model are large : (i) the model enables to perform 3D560

simulations; (ii) the mechanisms of strain hardening, static and dynamic recovery are

simulated thanks to phenomenological laws coming from a pre-existing mean field

model [12, 13], which is not as accurate as with a crystal plasticity finite element for-

mulation, but considerably reduces the computational costs of the simulations; (iii) the

considered 3D model is able to describe the grain boundary network using the level-set565

method, even at large deformation (for instance ε > 0.2) in order to reproduce indus-

trial processes and (iv) a sensitivity study has largely minimized computational costs,

allowing the integration of the model in an industrial context through the DIGIMU R©

software package.

Results of DRX and PDRX simulations using this new numerical framework were also570

confronted with the prediction of the above-mentioned mean field model [12, 13]. Re-

sults have shown that the mean field model provides a poor description of the recrys-

tallized fraction and grain size distributions during hot deformation. This difference

reinforces the idea that the proposed full field model is much more powerful than a

mean field model since it explicitly takes the grain boundary network into account. Af-575

ter hot deformation, the whole results predicted by the mean field model, except the

grain size distribution, are close to the full field predictions.

Future investigations will aim to (i) improve the mean field model by tackling some

considered assumptions; (ii) validate the proposed full field formalism thanks to exper-

imental results and (iii) confront this model to a crystal plasticity-based DRX full field580

model.
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Appendices

A. Representation of the grain boundary network

The Voronoı̈ method consists in generating a diagram composed of a set of N590

Voronoı̈ nuclei (Si). Then, a single Voronoı̈ cells Vi per nucleus is defined follow-

ing this rule: each Voronoı̈ cell is composed of all points closer to Si than to any other

nuclei. However, the Voronoı̈ method cannot respect a given grain size distribution.

Thus, a second method called Laguerre-Voronoı̈ can be used. This method consists in

generating a diagram where the locations of the cells faces are constrained by a given595

non-intersecting spherical packing. Thus, the diagram is composed of N seeds each

with a weight (Si,ri). Then, a single Laguerre-Voronoı̈ Li is created per seed following

this new rule: each Laguerre-Voronoı̈ cell is composed of all points closer to Si than

to any other nuclei, via the power distance. Where the power distance from Si to x is

defined by d(x,Si)
2− r2

i .600

B. Level set method for grain boundaries description

A LS function ψ is defined over a domain Ω as the signed distance function to the

interface Γ of a sub-domain G of Ω. The values of ψ are calculated at each interpolation

point (node in the considered P1 formulation) and the sign convention states ψ ≥ 0

inside G and ψ ≤ 0 outside :605

 ψ(x, t) =±d(x,Γ),x ∈Ω,

Γ(t) = {x ∈Ω,ψ(x, t) = 0},
(B.1)

where d corresponds to the Euclidean distance. The equations to evaluate analytically

the LS functions of a Voronoı̈ or a Laguerre-Voronoı̈ tessellation are detailed in [49].

Generally, a single LS function is able to describe a single grain boundary leading to

a number of LS functions N equal to the number of grains Ng in the microstructure
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(N = Ng). To limit the number of LS functions and thus the computational cost, a610

coloring/recoloring technique has recently been developed and applied to this model

[31]. This technique aims to gather several grain boundaries in each LS function,

leading to a number of LS functions significantly lower than the number of grains

(N� Ng) during all the simulation.

C. Grain boundary migration kinetic615

To simulate the kinetic of grain boundaries, each LS interface is displaced during the

simulation according to a given velocity field~v by solving a transport equation :


∂ψ(x, t)

∂ t
+~v.~∇ψ(x, t) = 0,

ψ(x, t = 0) = ψ0(x),
(C.1)

Where ψ0(x) is the LS interface at t = 0s. The velocity is assumed to be the contribution

of two terms :

~v =~vc +~ve, (C.2)

where ~vc and ~ve are respectively the velocities due to capillarity effects and stored620

energy gradients expressed as follow :

~ve = Mbδ (ε̇)∆E~∇ψ, (C.3)

~vc =−Mbγb∆ψ~∇ψ, (C.4)

where Mb is the grain boundary mobility, δ (ε̇) is a strain rate dependant parameter

detailed in the following, ∆E is the stored energy gradient across the interface and γb is

the grain boundary energy. These descriptions of the different kinetic terms are correct

if the LS function ψ is a distance function ( i.e. || ∇ψ ||≡ 1) at least inside a thin layer625

|ψ| ≤ L around the interface.
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The grain boundary mobility Mb, appearing in Eqs. C.3 and C.4 can be written as a

function of temperature :

Mb = M0(T)exp
(−Qm

RT

)
, (C.5)

where Qm is the activation energy for grain boundary migration, M0 is the pre-exponential630

factor and R is the gas constant. In this study, Mb and γb are assumed isotropic for all

boundaries in the microstructure.

Sometimes, for mean field DRX modeling, Mb is a function of strain rate. However,

as there is no clear physical explanation for this dependency, and that it seems quite635

inappropriate to define differently here the mobility for capillarity or stored energy ef-

fects, it is preferred to introduce an equivalent formulation where an additional strain

rate term (function δ (ε̇)) is considered for the definition of velocity due to the stored

energy (Eq. C.3). This parameter is defined at different strain rates and a linear inter-

polation is made in the model to determine the new value at a given strain rate.640

To avoid kinematic incompatibilities and deal with the considered coloring/recoloring

scheme, the velocity term~ve is evaluated as common for all the LS functions and thanks

to the strategy described by Scholtes et al. (sections 3.2, 3.3 and Equation (8) of [32]

but where the corresponding mobility M is defined here as Mbδ (ε̇).645

Finally, updating the grain boundaries of the whole microstructure is equivalent to solve

the convective-diffusive equation of the N LS functions:


∂ψi(x, t)

∂ t
−Mbγb∆ψi(x, t)+~ve.~∇ψi(x, t) = 0, ∀i ∈ {1, ...,N},

ψi(x, t = 0) = ψ0
i (x).

(C.6)

650

The interfaces of every grains belonging to the ith LS function (ψi) is thus implicitly

given at each time step by the equation ψi(t,x) = 0. A major drawback of the LS

method is the loss of metric properties after the resolution of Eq. C.6. Indeed, even
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if the LS functions are initialized as distance functions, their metric properties are not655

preserved during the resolution of Eq. C.6 and consequently the distance functions

have to be reinitialized after the resolution. In order to reinitialize the metric properties

of the LS functions, a new direct reinitialization method proposed in [58] is used. This

parallel and optimized approach has been proven to be as accurate as a classical direct

reinitialization method, while being much faster.660
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