D. Li, Q. Guo, S. Guo, H. Peng, and Z. Wu, The microstructure evolution and nucleation mechanisms of dynamic recrystallization in hot-deformed Inconel 625 superalloy, Materials & Design, vol.32, issue.2, pp.696-705, 2011.
DOI : 10.1016/j.matdes.2010.07.040

H. Jiang, L. Yang, J. Dong, M. Zhang, and Z. Yao, The recrystallization model and microstructure prediction of alloy 690 during hot deformation, Materials & Design, vol.104, 2016.
DOI : 10.1016/j.matdes.2016.05.033

Z. Wan, Y. Sun, L. Hu, and H. Yu, Experimental study and numerical simulation of dynamic recrystallization behavior of TiAl-based alloy, Materials & Design, vol.122, 2017.
DOI : 10.1016/j.matdes.2017.02.088

K. Huang and R. Logé, A review of dynamic recrystallization phenomena in metallic materials, Materials & Design, vol.111, pp.548-574, 2016.
DOI : 10.1016/j.matdes.2016.09.012

X. G. Fan, H. Yang, P. F. Gao, R. Zuo, and P. H. Lei, The role of dynamic and post dynamic recrystallization on microstructure refinement in primary working of a coarse grained two-phase titanium alloy, Journal of Materials Processing Technology, vol.234, pp.290-299, 2016.
DOI : 10.1016/j.jmatprotec.2016.03.031

M. H. Maghsoudi, A. Zarei-hanzaki, P. Changizian, and A. Marandi, Metadynamic 685 recrystallization behavior of AZ61 magnesium alloy, Materials and Design, vol.57, 2014.
DOI : 10.1016/j.matdes.2013.12.051

M. Avrami, Kinetics of Phase Change. I General Theory, The Journal of Chemical Physics, vol.22, issue.12, 1939.
DOI : 10.1002/zaac.19332140411

M. Avrami, Kinetics of Phase Change. II Transformation???Time Relations for Random Distribution of Nuclei, The Journal of Chemical Physics, vol.90, issue.2, pp.212-224, 1940.
DOI : 10.1007/BF01341256

M. Avrami, Granulation, Phase Change, and Microstructure Kinetics of Phase Change. III, The Journal of Chemical Physics, vol.8, issue.2, pp.177-184, 1941.
DOI : 10.1063/1.1750386

F. Montheillet, O. Lurdos, and G. Damamme, A grain scale approach for modeling 700 steady-state discontinuous dynamic recrystallization, Acta Materialia, vol.57, issue.5, 2009.
DOI : 10.1016/j.actamat.2008.11.044

D. G. Cram, H. S. Zurob, Y. J. Brechet, and C. R. Hutchinson, Modelling discontinuous dynamic recrystallization using a physically based model for nucleation, Acta Materialia, vol.57, issue.17, pp.5218-5228, 2009.
DOI : 10.1016/j.actamat.2009.07.024

URL : https://hal.archives-ouvertes.fr/hal-00805034

P. Bernard, S. Bag, K. Huang, and R. Logé, A two-site mean field model of discontinuous dynamic recrystallization, Materials Science and Engineering: A, vol.528, issue.24, pp.7357-7367, 2011.
DOI : 10.1016/j.msea.2011.06.023

URL : https://hal.archives-ouvertes.fr/hal-00612438

O. Beltran, K. Huang, and R. Logé, A mean field model of dynamic and post-dynamic recrystallization predicting kinetics, grain size and flow stress, Computational Materials Science, vol.102, pp.293-303, 2015.
DOI : 10.1016/j.commatsci.2015.02.043

URL : https://hal.archives-ouvertes.fr/hal-01137230

]. L. Maire, B. Scholtes, C. Moussa, N. Bozzolo, D. Pino-muñoz et al., Improvement of 3D mean field models for capillarity-driven grain growth based on full field simulations, Journal of Materials Science, vol.446, issue.7139, pp.720-10970, 2016.
DOI : 10.1038/nature05745

URL : https://hal.archives-ouvertes.fr/hal-01430758

H. Hallberg, Approaches to Modeling of Recrystallization, Metals, vol.155, issue.115, pp.16-48, 2011.
DOI : 10.1006/jcph.1999.6345

URL : http://www.mdpi.com/2075-4701/1/1/16/pdf

A. D. Rollett, D. J. Srolovitz, and M. P. Anderson, Simulation and theory of abnormal grain growth???anisotropic grain boundary energies and mobilities, Acta Metallurgica, vol.37, issue.4
DOI : 10.1016/0001-6160(89)90117-X

D. Raabe, Introduction of a scalable three-dimensional cellular automaton with URL http

D. Raabe, Cellular Automata in Materials Science with Particular Reference to Recrystallization Simulation, Annual Review of Materials Research, vol.32, issue.1, pp.53-76, 2002.
DOI : 10.1146/annurev.matsci.32.090601.152855

L. B. Mora, G. Gottstein, and L. Shvindlerman, Three-dimensional grain growth: Analytical approaches and computer simulations, Acta Materialia, vol.56, issue.20, pp.5915-5926, 2002.
DOI : 10.1016/j.actamat.2008.08.006

S. G. Kim, W. Kim, I. Dong, B. Steinbach, and . Lee, Phase-field modeling for 3D grain growth based on a grain boundary energy database, Modelling and Simulation in, B6TW8-466R5TY-1, pp.7550965-0393034004
DOI : 10.1088/0965-0393/22/3/034004

B. Merriman, J. K. Bence, and S. J. Osher, Motion of Multiple Junctions: A Level Set Approach, Journal of Computational Physics, vol.112, issue.2, pp.334-363, 1994.
DOI : 10.1006/jcph.1994.1105

M. Bernacki, Y. Chastel, T. Coupez, and R. Logé, Level set framework for the numerical modelling of primary recrystallization in polycrystalline materials, Scripta Materialia, vol.58, issue.12, pp.1129-1132, 2008.
DOI : 10.1016/j.scriptamat.2008.02.016

URL : https://hal.archives-ouvertes.fr/hal-00509731

M. Elsey, S. Esedoglu, and P. Smereka, Large-scale simulation of normal grain growth via diffusion-generated motion, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.127, issue.3838, pp.381-401, 2011.
DOI : 10.1126/science.161.3838.276

URL : http://rspa.royalsocietypublishing.org/content/royprsa/467/2126/381.full.pdf

M. Elsey, S. Esedoglu, and P. Smereka, Diffusion generated motion for grain growth in two and three dimensions, Journal of Computational Physics, vol.228, issue.21, 2009.
DOI : 10.1016/j.jcp.2009.07.020

URL : http://www.math.lsa.umich.edu/%7Eesedoglu/Papers_Preprints/elsey_esedoglu_smereka.pdf

C. Mießen, M. Liesenjohann, L. Barrales-mora, L. Shvindlerman, and G. Gottstein, An advanced level set approach to grain growth Accounting for grain boundary anisotropy and finite triple junction mobility, Acta Materialia, vol.99, issue.99, pp.780-819, 2015.

R. Logé, M. Bernacki, H. Resk, L. Delannay, H. Digonnet et al., Linking plastic deformation to recrystallization in metals using digital microstructures, Philosophical Magazine, vol.14, issue.30-32, pp.30-32, 2008.
DOI : 10.1016/j.actamat.2006.10.022

M. Bernacki, R. Logé, and T. Coupez, Level set framework for the finite-element modelling of recrystallization and grain growth in polycrystalline materials, Scripta Materialia, vol.64, issue.6, pp.525-528, 2011.
DOI : 10.1016/j.scriptamat.2010.11.032

URL : https://hal.archives-ouvertes.fr/hal-00577039

H. Hallberg, A modified level set approach to 2D modeling of dynamic recrystallization , Modelling and Simulation in, Materials Science and Engineering, vol.21, issue.800

B. Scholtes, M. Shakoor, A. Settefrati, P. Bouchard, N. Bozzolo et al., New finite element developments for the full field modeling of microstructural evolutions using the level-set method, Computational Materials Science, vol.109, pp.388-398, 2015.
DOI : 10.1016/j.commatsci.2015.07.042

URL : https://hal.archives-ouvertes.fr/hal-01479197

B. Scholtes, R. Boulais-sinou, A. Settefrati, D. Pino-muñoz, I. Poitrault et al., 3D level set modeling of static recrystallization considering stored energy fields, Computational Materials Science, vol.122, pp.57-71, 2002.
DOI : 10.1016/j.commatsci.2016.04.045

URL : https://hal.archives-ouvertes.fr/hal-01327901

W. Chuan, Y. He, and L. H. Wei, Modeling of discontinuous dynamic recrystallization of a near-?? titanium alloy IMI834 during isothermal hot compression by combining a cellular automaton model with a crystal plasticity finite element method, Computational Materials Science, vol.79, pp.944-959, 2013.
DOI : 10.1016/j.commatsci.2013.08.004

Y. Mellbin, H. Hallberg, and M. Ristinmaa, A combined crystal plasticity and graph-based vertex model of dynamic recrystallization at large deformations, 825 Modelling and Simulation in, Materials Science and Engineering, vol.23, issue.4
DOI : 10.1088/0965-0393/23/4/045011

E. Popova, Y. Staraselski, A. Brahme, R. K. Mishra, and K. , Coupled crystal plasticity ??? Probabilistic cellular automata approach to model dynamic recrystallization in magnesium alloys, International Journal of Plasticity, vol.66, pp.85-102, 2015.
DOI : 10.1016/j.ijplas.2014.04.008

P. Zhao, T. Song-en-low, Y. Wang, and S. R. Niezgoda, An integrated full-field model of concurrent plastic deformation and microstructure evolution: Application to 3D simulation of dynamic recrystallization in polycrystalline copper, International Journal of Plasticity, vol.80, pp.38-55, 2016.
DOI : 10.1016/j.ijplas.2015.12.010

]. L. Reyes, P. Páramo, A. Salas-zamarripa, M. De-la-garza, and M. G. Mata, Grain size modeling of a Ni-base superalloy using cellular automata algorithm, Materials & Design, vol.83, issue.83, pp.301-307, 2015.
DOI : 10.1016/j.matdes.2015.06.068

H. Li, X. Sun, and H. Yang, A three-dimensional cellular automata-crystal plasticity finite element model for predicting the multiscale interaction among heterogeneous deformation, DRX microstructural evolution and mechanical responses in titanium alloys, International Journal of Plasticity, vol.87, pp.154-180, 2016.
DOI : 10.1016/j.ijplas.2016.09.008

M. Chen, W. Yuan, H. Li, and Z. Zou, Modeling and simulation of dynamic recrystallization behaviors of magnesium alloy AZ31B using cellular automaton method, Computational Materials Science, vol.136, pp.163-172, 2017.
DOI : 10.1016/j.commatsci.2017.05.009

F. Tancret, E. Galindo-nava, and P. E. Rivera-díaz-del-castillo, Dynamic recrystallisation model in precipitation-hardened superalloys as a tool for the joint design of alloys and forming processes, Materials & Design, vol.103, pp.293-299, 2016.
DOI : 10.1016/j.matdes.2016.04.076

URL : https://hal.archives-ouvertes.fr/hal-01723430

F. Chen, Z. Cui, and J. Chen, Prediction of microstructural evolution during hot forg- 865 ing, Manufacturing Review, vol.1, 2014006.
DOI : 10.1051/mfreview/2014006

URL : https://doi.org/10.1051/mfreview/2014006

Y. Lin, K. Li, H. Li, J. Chen, X. Chen et al., New constitutive model for high-temperature deformation behavior of inconel 718 superalloy, Materials & Design, vol.74, issue.74, pp.108-118, 2015.
DOI : 10.1016/j.matdes.2015.03.001

M. Azarbarmas, M. Aghaie-khafri, J. M. Cabrera, and J. Calvo, Microstructural evolution and constitutive equations of Inconel 718 alloy under 875 quasi-static and quasi-dynamic conditions, JMADE, vol.94, pp.28-38, 2016.
DOI : 10.1016/j.matdes.2015.12.157

D. Weaire, J. P. Kermode, and J. Wejchert, On the distribution of cell areas in a Voronoi network, Philosophical Magazine B, vol.64, issue.5, pp.101-105, 1986.
DOI : 10.1080/00107518408210979

Z. Fan, Y. Wu, X. Zhao, and Y. Lu, Simulation of polycrystalline structure with Voronoi diagram in Laguerre geometry based on random closed packing of spheres, Computational Materials Science, vol.29, issue.3, pp.301-308, 2004.
DOI : 10.1016/j.commatsci.2003.10.006

M. Bernacki, H. Resk, T. Coupez, and R. E. Logé, Finite element model of primary recrystallization in polycrystalline aggregates using a level set framework, Modelling and Simulation in, Materials Science and Engineering, vol.17, issue.6, p.895, 2009.

R. Quey, P. Dawson, and F. Barbe, Large-scale 3D random polycrystals for the finite element method: Generation, meshing and remeshing, Computer Meth- 900 ods in Applied Mechanics and Engineering, pp.1729-1745, 2011.
DOI : 10.1016/j.cma.2011.01.002

K. Hitti, P. Laure, T. Coupez, L. Silva, and M. Bernacki, Precise generation of com- 905 plex statistical Representative Volume Elements (RVEs) in a finite element context, Computational Materials Science, vol.61, 2012.

L. Chen, J. Chen, R. A. Lebensohn, Y. Z. Ji, T. W. Heo et al., An integrated fast Fourier transform-based phase-field and crystal plasticity approach to model recrystallization of three dimensional polycrystals, 51] U. F. Kocks, Laws for Work-Hardening and Low-Temperature Creep, 1976.
DOI : 10.1016/j.cma.2014.12.007

H. Mecking and U. Kocks, Kinetics of flow and strain-hardening, Acta Metallurgica, vol.29, issue.11, pp.920-1865, 1981.
DOI : 10.1016/0001-6160(81)90112-7

A. Yoshie, H. Morikawa, Y. Onoe, and K. Itoh, Formulation of static recrystallization of austenite in hot rolling process of steel plate., Transactions of the Iron and Steel Institute of Japan, vol.27, issue.6, pp.425-431, 1987.
DOI : 10.2355/isijinternational1966.27.425

F. J. Humphreys, M. E. Hatherly55-]-j, P. B. Bailey, and . Hirsch, Recrystallization and related annealing phenomena The Recrystallization Process in Some Polycrystalline Metals, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.267, pp.930-941, 1328.

P. Peczak and M. J. Luton, The effect of nucleation models on dynamic recrystallization I. Homogeneous stored energy distribution, Philosophical Magazine B, vol.74, issue.1, pp.935-115, 1993.
DOI : 10.1016/0956-7151(91)90124-J

K. Huang, Towards the modelling of recrystallization phenomena in multi-pass conditions: application to 304L steel, 2012.
URL : https://hal.archives-ouvertes.fr/pastel-00682138

M. Shakoor, B. Scholtes, P. Bouchard, and M. Bernacki, An efficient and parallel level set reinitialization method Application to micromechanics and microstruc- 945 tural evolutions, Applied Mathematical Modelling, vol.39, pp.23-24, 2015.
DOI : 10.1016/j.apm.2015.03.014