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Short-Term Spatio-Temporal Forecasting of
Photovoltaic Power Production

Xwégnon Ghislain Agoua, Robin Girard and George KarirkiaSenior Member, |IEEE

Abstract—In recent years, the penetration of photovoltaic (PV) are necessary to manage distribution networks, micrognids
generation in the energy mix of several countries has signdantly  smart homes, where other options like active demand, stprag
increased thanks to policies favoring development of reneables electric vehicles etc., coexist with PV generation [1],. [3]

and also to the significant cost reduction of this specific téc .

nology. The PV power production process is characterized by The I_|terature proposes several methods_ _to forecas_t PV
significant variability, as it depends on meteorological coditions,  Production [4]. These methods can be classified according to
which brings new challenges to power system operators. To their specific forecast horizon [5]. The final choice of fore-
address these challenges it is important to be able to obsenand  casting technique is related to this horizon and the availab
anticipate production levels. Accurate forecasting of thepower data. The most common statistical methods are regression

output of PV plants is recognized today as a prerequisite for thods like li . . ¢ bansti
large-scale PV penetration on the grid. In this paper, we prpose MENOAS lIke [in€ar regression, regression firees, bapstin

a statistical method to address the problem of stationarityof PV~ bagging, random forests, Support Vector Machines [6]-[9],
production data, and develop a model to forecast PV plant poer and semi-parametric models. These techniques investigate

output in the very short term (0-6 hours). The proposed model correlation between the historical production and theteela
uses distributed power plants as sensors and exploits thespatio- meteorological measurements [10]. The Box and Jenkins time

temporal dependencies to improve forecasts. The computatnal .
requirements of the method are low, making it appropriate fa series treatment methods (ARIMA, ARMA, SARIMA, ...) are

large-scale application and easy to use when on-line updag @lso widely used in PV power forecasting. The question of
of the production data is possible. The improvement of the the series stationarity is treated by pre-processing stsjpg

normalized root mean square error (N(RMSE) can reach 20% or eijther clear sky modeling, [11]-[13] or certain normaliaat
more in comparison with state-of-the-art forecasting techiques. techniques employing Top of Atmosphere (TOA) or Global
Horizontal Irradiance (GHI). In [14], [15], regressionsal
Index Terms—Autoregressive processes, forecasting, photo-methods are also used. Data mining techniques are employed
voIt.alc systems, smart grids, spatial correlation, statinarity, time to cluster past events into historical data on productictian
series. meteorological variables. This same idea of similarity sedi
to forecast production when PV panels are covered by snow
. INTRODUCTION [16].
ROWING global energy demand and increased aware-Neural networks have been used to forecast PV production
ness of the consequences of climate change have putwith different types of activation functions [17]. They arften
newable energy in the spotlight. Renewable energy geoeraticompared or coupled with physical models [18], [19]. They
and particularly photovoltaic (PV) energy, is continuguisl- can also be used as a second step in a two-step modeling chain,
creasing in several countries, especially in Europe. Tleepo where the first step is to predict meteorological variabkiagi
output of a PV plant depends on meteorological conditioms. Numerical Weather Predictions (NWP) [20], [21].
regions subject to active weather changes, it is charaetkri Recent years have seen increasing interest in techniques
by high variability and low short-term predictability. Té& that can take into account not only historical data about the
characteristics challenge power system operators, simee tsite that is the object of forecasting, but also other sjhatia
introduce uncertainties into the various functions of powelistributed data. These methods, initially proposed fondwi
system management, especially for large-scale PV infegrat power forecasting, are developed for different applicatio
The PV production expected in the next few minutes, houiike identifying regions with high energy production potieh
or days needs to be accurately forecasted in order to effigierj22], [23], studying the spatial propagation of forecagtin
perform functions like scheduling power systems, minimigi errors [24], [25], and even “"geographically intelligentiep
reserve costs [1], trading PV production in electricity keds diction [26]-[28].
and coordinating PV plants with storage, and in generalte co Most references refer to spatio-temporal solar irradimatio
tribute to increasing the competitiveness of renewableggne forecasts. Spatial information from sky cameras or sgaelli
technologies [2]. In the context of smart grids, PV foresasimages is used and described in 2D or even 3D with cloud
, . motion vectors. Cloud movement predictions lead to solar
The authors are with MINES ParisTech, PSL Research UntyeRERSEE . . .
- Centre for Processes, Renewable Energies and Energyngyses radiation forecasts for very short-term horizons (a fewutes
10207 rue Claude Daunesse, 06904 Sophia Antipolis Cedencér (e- up to 2-4 hours ahead) [29]-[31]. NWP models and cloud
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space or kriging [33]-[36]. These methods employed in solar
radiation forecasts can be costly due to the complexity ef th
required measuring infrastructure and data, and the mugleli
chain that has to be developed.

In this paper we propose a forecasting methodology that
exploits the spatial and temporal correlations in existiaga
from geographically dispersed PV installations to prethiet
power output of a specific plant. Short-term forecast harizo
of a few minutes up to 6 hours are considered. The models
investigated here directly use geographically dispersadep
plants as a network of sensors. This differentiates the ap-
proach from methods that use off-site data from meteoroligi
stations and ground-based irradiance sensors as in [3€]. Hy. 1. The power plants of the second data dsetiocated in west central
proposed model does not consider input from a NWP modEtance. The distance between the power plants ranges fram tb 230 km.
and forecasts are made based on the production data and not
global irradiance data as is the case in [38], [39]. series through appropriate stationarization. To achieig we

In a preceding conference paper [40], the authors haVre{)pose a new method to stationarize PV production series

proposed a spatio-temporal methodology. In this paper t Rat is not only useful for analyzing correlations but also f

methodology IS S|gn|f|gantly |mproqu on several pom.ts.'eT%uilding the forecasting models themselves. Initiallypttest
first improvement consists in proposing a new stationddmnat ; . :
cases are introduced that provide real world data, usedsn th

process, that unlike [41], does not involve modeling for thseection to assess the proposed stationarization proaasén a

clear sky generation. The proposed approach_alm_s 10 OvVercQler sections to evaluate the proposed forecasting models
weaknesses of the clear sky based normalization especially

for early and late hours of the day when solar irradiation is
low. The second improvement proposed here permits to take Test Cases

into account the local meteorological conditions in thetisBa  Two data sets are considered in this paper corresponding
temporal model. This is done by defining model coefficientg relatively different climatic conditions and differespatial
dependent on the weather variables in the estimation psocfensities of installed PV plants as well as the distances
The third improvement is to propose a model that integrates getween them. The first data set labelad consists of time
automatic selection of the appropriate input variabless 1  series of the measured PV generation of a set of 9 power plants
particularly adapted to highly dimensional problems, aslw& |ocated in the south of France. The power plants are labeled
the case for spatio-temporal PV forecasting. Finally, reial p1-p9 with peak power ranging from 45 kWc to 5 MWec. The
density of the considered PV plants in real-world cases cgptance between the power plants ranges from 5 km to 465
be variable, and for this reason we illustrate the usefsli®és km. The measurements cover a period of 20 months starting
the proposed methodology with two test cases featuring a l@Mm July 2013 with a resolution of 6 min to 15 min depending
and high number of PV plants. The dimensionality probleigh the PV plant. The data quality has been checked to remove
and the importance of the proposed variable selection psocgconsistencies and then interpolated to produce seritssavi
are highlighted through the test case with high number @5 min temporal resolution that are used hereafter.
PV installations (185 PV plants). The benefits in terms of The second data set labeldd is a good illustration of a
performance of all the above contributions with respect@l [ case featuring a high number of power plants and significant
are presented in section IV-C. geographic density. It comprises the output of 905 PV power
The paper is structured as follows: the potential of makingyerters in the mid-west region of France with peak power
use of spatio-temporal information is investigated inisectl  ranging from 3.2 kWc to 58 kWc. This amount of inverters
with a focus on the proposed stationarization procedue, torresponds to 185 different PV power plants (set of inverte
data and the evaluation criteria. The proposed spatio-¢eahp at the same location). The distance between them varies from
models are presented in section Ill. The results are predent km to 230 km. The data relate to the period from November
and discussed in section IV. Finally, the conclusions of th®14 to March 2016. The original time resolution of the data
study are discussed in section V. is 5 min, which was averaged to produce series with a 15
min temporal resolution as with the previous test case. The
Il. ANALYSIS OF THEINTEREST OFSPATIO-TEMPORAL  locations of the power plants in the test casere represented

MODELING in Figure 1.

The aim in this section is to demonstrate the interest ofgusin ] o
spatio-temporal information for PV forecasting purpodgss B The Sationarization Procedure
is done through an analysis of the correlations between dataMost of the time series analysis methods require stationary
from PV plants. However, given that these data are dominateeties. The photovoltaic production series are not station
by the daily sun cycle, which biases correlation analysibecause the average production depends on the time of day,
it is necessary to subtract the periodic components in thdile the variability, as expressed by the variance of the



production, depends on the level of production and indiyectis piecewise linear in the simulated production and depends
on the time of day. A simple differentiation of the series isn the direction of the productions daily evolution (either
not efficient in producing stationary time series because tincreasing at the beginning of the day or decreasing aftar so

non-stationarity in the variance remains. noon). It can be expressed as:
Here we propose a procedure to stationarize a PV produc- _ _ _ _
tion series. The aim is to decompose the production series F(PZ™) = PP 4 fo(PE™) + fo(PE™) 3

using a deterministic component that describes the movemen

of the sun. It is inspired from the clear sky index for solawhere the functiory, is defined from sunrise to noon arfg

radiation [42]-[44]. from noon to sunset. The goal ¢f and f; is to improve the
The clear sky index for solar radiation represents the wé#gatment at the beginning and at the end of the day. Their

that the atmosphere attenuates light on an hour-to-houmypr ddefinition on a daily basis is:

to-day basis as a function of the movement of the earth around

sun. It is defined as the quotient of radiation actually mesu fa(0) = aq fo (P%?) =7

by the radiation simulated with a clear sky model. fa(BaTmez) = 0 Jo (ﬂb Pusz) = ¢
This index makes it possible to remove the diurnal and fa(PSIMmY = 4 f(0) = o

seasonal pattern from irradiation data, which is expected t 4)

improve the performance of the statistical techniquesie@pl where P is the maximum production simulated for the
thereafter. Here, we define it as the ratio between irraxhatiday. The values of the coefficients, i, 84,5,y are obtained
measurements and an advanced clear sky estimate at:timeghrough an optimization process that aims to minimize the
s standard deviation criterion. The optimization is madeamd
Ism _th_e_ c_onstralntsﬁmb € (_0,_2). The c_oeff_|C|ents_a_re ra_ndomly
o ) ) initialized and then optimized considering a sliding windof
Ina similar way, we define a clear sky index for photovoltaigne_month over the ESRA irradiation time series. The sidin
power k" as pmeas window covers the period prior to the day of interest. The
}tm.m (1) stationarity of the normalized form af; was evaluated by

¢ analyzing its autocorrelogram and computing unit root. test
whereP;™“** is the PV production measured at timeP* is  The procedure can be summarized in the following steps
the simulated production output for timeP*" is constructed for a power plant:
as the product of the PV overall system efficiency parameterl)
n and the simulated irradiatiod;*™ at either the Top of
Atmosphere (ToA) level or under clear sky conditions as
proposed by the European Solar Radiation Atlas (ESRA)3)
model [43]. The parametey embedded the efficiency of the
generator and the active surface.

Although intuitively, the indext!?” would be expected to be 4)
adequate for de-trending, in practice appropriate statign
tests on the resulting series (i.e. unit roots tests) iriditaat
the results are not satisfactory. For this reason we propose
new relation between the actual production dd™ using a c
function f that would explain more accurately the link between
the two productions. This function would also help to reduce To investigate the existence of spatio-temporal pattemes,
the non-stationarity when defining the new working serigs evaluate the cross-correlation between the lagged primtuct
for the hours at whichP"™ is not zero as series. However, this requires eliminating the effect obtEa

, to West correlation transfer by considering the staticreati
up = P/ f(BF). @ series for the PV plants.

The irradiation considered for definings™ is the sim- Figure 2 presents the empirical cumulative distribution of
ulated ESRA series as it embeds more information abdhe cross-correlation values for the power plants in tha dat
the atmospheric characteristics than the ToA, such as aJbed,. Three distributions are plotted for three classes of dizta
air mass, the Linke turbidity factor and other atmospherletween the power plants (from the closest to the farthest).
conditions. The simulation of irradiation was done under thThe figure shows that the cross-correlation values are highe
hypothesis of a horizontal surface; this is because the- indor the first class of distance (less 50 km) than for the last
nation does not affect the stationarization since the tiaria class (more than 100 km). As the effect of the bell-shape in
in the output level it produced would be assimilated 4oy the stationarized production data is absent, we can ashane t
Different types of relation can be conceived fprincluding the link described by these correlation values is due to isdpa
linear, quadratic and piecewise linear. transfer of information between the power plants mainly due

The choice of the appropriate function was made using cloud movements. This analysis confirms the interest of a
a guantitative criterion based on the evolution of the daifprecasting solution that takes into account both the teaipo
standard deviation of the seriag. The retained function and spatial variability of the production series.

wrr __
k™ =

pv _
ky =

Clean the spurious data from the PV production series.
Simulate the ESRA clear sky irradiation series and the
corresponding power series using the plant’s efficiency.
Determine the appropriate coefficients of the functions
(fa, f») using an optimization process on a sliding
interval of simulated irradiation values.

Normalize the measured serig¥™“** to obtain the
seriesu;.

. Analysis of Spatial Correlations
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Fig. 3. Data setd;: Comparison of the normalized RMSE of AR and

I1l. A M ODEL FORSPATIO-TEMPORAL PV FORECASTING persistence models over the testing set. Solid and dottezb lrepresent
’ respectively the performance of persistence AR models. fohecast time

A. The Reference Model step is 15 min.

In order to be able to compare the advantages of a spatio-
temporal approach for PV forecasting, we introduce refezen For the 5 months of testing set for each power plant, we also
models for benchmarking that does not use such geograp‘,m '

llv distributed inf tion. S | method be used plied the persistence and compared its performance with
cally distributed information. Several methods can be Usedy,, A mogel, Figure 3 presents the normalized root mean
forecast PV generation as presented in the introductioe.

X . : ; uare error RMSE for the AR and persistence models for
persistence model is often used as a reference in the litera 4 P

i he d; power plants as a function of the prediction horizon.
on renewable energy forecasting to compare the performa%e

o . é figure shows that the best model is the AR model, as its
of advanced models, as it is easy to compute, is based only

d dat dd t invol dell SE levels are the lowest. We thus retain the AR model as
measured data, and does notINVolve any Modeling ProCeSaea.ro ance in this paper to evaluate the performance of the
Thus, the persistence results are easily replicable. Mereo

in practical applications of PV forecastin ersistense spatio-temporal forecasting models. With our referenceeho
P PP ing, p 15€ {hus defined, we can evaluate the contribution of integgatin
often chosen as a fallback model to provide forecasts in ¢

653? itional information from neighboring plants.
advanced models fail. We define here as persistence a mo eq g gp

that considers that the power production of a PV plant at
time ¢ + h is the same as the production of that plant at )
the same time on the previous day. This approach does RotThe Proposed Spatio-Temporal Model

consider any off-site data. Despite its popularity as areee The correlation analysis carried out in subsection 1I-C

model in the I|teratu_re, its overall performance is poor. [_A'l:onfirms the interest of using measurements from other power
To account for the dlﬁgrent factors that affect PV prodowti \PI nts to increase the quality of the PV power forecasts. We
one could adjust persistence as a function of the obser ;?r%pose here a spatio-temporal model that produces PV power

values on the current day. However, this already '”"O'Vmo forecasts for a power plant using measurements from other

data manipulation, and different options could be coneld;arrﬁlsamts nearby.

but such empirical adjustments are out of the scope of t .
paper. To avoid obtaining overoptimistic results from atigpa Lgt X be the set ofV PV plants andZs the approprlate
imum lag. The forecast model for a power plant of interest

temporal method, it is also necessary to use an advan@.‘asxthen defined as:
reference” model featuring state-of-the-art performaand vl ! '

reasonable complexity so that results can be easily repeatiu Ls
For this purpose we consider autoregressive (AR) models pPr=p° +Z Z Blaypt{l ) (6)
described as: =0 yeX
L
- 5 5l o For a selected horizoh, the coefficientss = (59, 5,) with
Pt+h\t = 52 + Zﬂéptfl () $=(5,6r)

By = (ﬁl’y)OSlSLs,yeX are estimated using a least squares

) ) ) method that involves minimizing the Residual Sum of Squares
where P is the production of the power plamtat timez and (RSS):

Ptﬁh“ the prediction for horizo. The appropriate maximum

time lag L is chosen by minimizing the Akaike Information

Criterion (AIC). We applied this model to the data detusing RSS(B) = [|P* — X ]2, @)
15 months for learning and 5 months for the tests. Forecasts

are updated at each 15-minute time step. whereP* is the measurement for power plant

=0



X is aN x (Ls+1) matrix the lines of which are the currentD. Improved Variable Selection Procedure

and lagged production for the power plants In the model presented above, the dimensionality problem

(i.e. high number of variables) is treated with a simple

selection variable procedure. The model can be modified

Lo : - (8) to directly treat the variable selection issue using LASSO.

L The Least Absolute Shrinkage and Selection Operator [45]
regression integrates a penalty into the minimization |emb

The forecast at time for the horizonh for a power plant By applying a constraint on the sum of the absolute values of

1 P» ... P",.
X: . . . .

« is then defined by: the coefficients. The estimator is defined as:
A 1
Ls lasso .
. . . Jé] —argmln{—RSS(ﬂ)—i—MﬁHl}. (13)
Ve =B+ D Y BV PLy ©) 5 12
=0 yex Some bias is introduced but the variance is reduced. The

The first i lated to the ab del is the di . selection of the coefficients is automatic and some of them
_hefirstissué refated to the above modet 1S the dIMENSIOfy, (q 14 zerg for high values of the penalization parameter
ality problem when there is a high number of PV plants.

. . Phe regularization parametaris obtained by cross-validation
reduce the complexity of the model in such cases, we propgse 9 b y

a two-step variables selection procedure. Let us gathe and the path of the solutions ofis piecewise linear in.
power plant of interest for which the forecasts are made. The
first step is to compute the distance between the plaahd

the other plants and select thg closest plants tazc. The  The proposed models are applied to the data getand
second step is to apply a stepwise selection procedure bagedor a 6-hour horizon with a 15-min time step, and with a
on the AIC criterion. The selection is made backward;sthe sliding window scheme that updates forecasts every 15 min.
variables and their respective lags are integrated intonibeel The forecasts are compared to those of the reference model.
and then removed one by one and the AIC is recalculated edde models were developed using the software R [46].

time. The model with the minimum AIC is retained.

IV. EVALUATION

A. Impact of the Sationarity Procedure on Forecast Errors

. _ . The reference AR model was applied to the two types of
C. Extension of the Model: Spatio-Temporal Model using production series ofl: the raw series and the series that
Clusters of Meteorological Conditions was stationarized following the procedure proposed iniect

The previous model is purely based on the historical produIJ:'- 'I;]he RMSEl for thz r(ra]spgctwe series \(/jvas corr;]puted .for
tion data. Here, we propose a variant of the model that allofg&ch power plant and the improvement due to the station-

a smooth dependency of the linear model coefficients on Io@aﬂzat'(_)n was ca_lculated. For ".’1" the plants except_P4,e_ther
meteorological conditions. The meteorological variabias IS a significant improvement in RMSE when stationarized

be temperature, wind speed or direction, or another variapferies are used. The average improvement in terms of RMSE

These measurements are obtained from the closest wea{ﬁe7r%' The stationarized series perform better than the raw

station. With the previous notation, the forecast for thaZum inputs. The case of P4 can be explained by thg fa.c.t tha_t the
h is denoted as: AR model efficiently captures the temporal variability with

standard normalization.

The same analysis was made of the power plants in data
set dy, where 136 power plants were retained after data
cleaning. Figure 4 represents the improvement of the RMSE
achieved with the stationary procedure fds. The mean

where Z represent the meteorological variables. The coefilfProvement for 3-hour horizons is 10% and can reach 15%.

cients are estimated by weighted least square regression biis significant reduction in forecasting errors confirme th
efficiency of the stationarization method and the interdst o

using it to pre-process data before integrating them inéo th

L
P =802+ >3 Birz)py, (10)

=0 yeX

. . Ziy—2 ) forgcasting model. Thus hereafter, we use the statiorthrize
hy(z) = Arg mlnz 10) (f) (Pty - Ptih) (11) series.
t
where the coefficient is the mean of the random variabte B. Performance of the Spatio-Temporal Model
The weights function is exponential: For each of the power plants af, we apply the spatio-
temporal model in its form defined in part IlI-B. The stan-
¢(x) = exp (—[[z]]*/2 ). (12) dardized errors are computed at timdor look-ahead time

h ranging from 15 min to 6 hours. The densities of the
The weights are calculated using the measurements fromediction errors are computed using kernel density esitima
the closest available meteorological station. and are presented in figure 5 for two power plants and differen



s B TABLE |
RMSE IMPROVEMENT OF THE SPATIGTEMPORAL (ST) MODEL OVER THE
9 REFERENCEAR MODEL AND THE RANDOM FOREST(RF) MODEL FOR5
= o | POWER PLANTS OF DATA SET; .
= 2
[0
£ Improvement P1 P2 P4 P5 P6
3 o | of RMSE (%)
s - min 0.4 3.02 0.61 -046 0.83
E ST vs AR mean 9.49  13.05 7.36 869 1257
% max 16.81 19.27 125 1571 20.13
s °
e« min___ 0.17 294 032 -0.72 2.14
ST vs RF mean 6.52 10.27 45 5.03 7.84
° ‘ ‘ ‘ ‘ ‘ ‘ max 153 166  9.03 1112 11.39
1 2 3 4 5 6
Horizon (hours) Day type Day type
8 -4 — VvC 8 4 — Ve
Fig. 4. Data setl>: RMSE Improvement of the AR model with stationary & me 9 me
series over non-transformed data. Each line representsinibeovement = | = L ®
obtained for a power plant. The time step is 15 min. o &0
EQ € a
o> o>
: £5 557
w Horizon Horizon a © Qo
o 15min o | o 15min EZ EZ
W 1 hour « | 1 hour w - )
o | B 2hours B 2 hours % %
N m ol o = o = S
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B 6 hours B 6 hours
> S 7 >
g ?, T T T T T T T T T T T T
[T [a] 1 2 3 4 5 6 1 2 3 4 5 6
S 4
Horizon (hours) Horizon (hours)
2 Fig. 6. RMSE Improvement of spatio-temporal model compat@dhe
reference model by day type for two power plants of datadset
o . — The day types are very cloudy (vc), moderately cloudy (md) @aar sky(cs).
T T T T T T T T T T T T T T T T

-10 10 20 30 40 -10 10 20 30 40

Error [%Pmax] Error [%Pmax]

The analysis of the performance of the spatio-temporal
model can be related to the sky cover. The days of the testing
set can be clustered according to sky cover level. We then
define three levels of sky coverage: clear sky (cs), modgrate
cloudy (mc) and very cloudy (vc). These levels were computed
horizons. Note that for both power plants the distributiongsing an index based on the ratio of the sum of the daily
are not Gaussian, as the modes and averages are significasiuction to the sum of the simulated irradiation using the
different. The averages are close to zero and the skewHSRA model. Figure 6 presents, for two power plantsigf
negative. As the horizon increases, the distribution mbdfess the improvement of the spatio-temporal model compared to
to the left. The same analysis was performed on the othfe reference model by type of day.
power plants ofl; with the same conclusions. We observe that for the first two hours the improvement on

To obtain a more complete overview of the proposed modei®udy days exceeds that of clear days. This observationsho
performance, we compare it to random forest (RF) models. Rfat the spatio-temporal model helps to capture the movemen
models are shown in the literature [10] to be one of the mast the clouds. The graphs also show that the improvement
efficient models to produce accurate forecasts of PV powergreater for clear sky days for the longer horizons and that
production. We thus computed an RF model and comparedéigen on the cloudiest days, the improvement exceeds 5%. This

performance to the spatio-temporal model. Table | predéBts analysis produced similar results for the other power glant
minimum, mean and maximum RMSE improvement over the

6-hour time horizons of the spatio-temporal model (ST)tw.r.

the AR and RF models for a sample of five power planfs: YMnd Speed Effect on the Model Performances

of dy. The table shows an average improvement of aroundWe choose the wind speed for the meteorological variable
10% for the ST model compared with the AR model and 6%s presented in the model extension in part 1lI-C. This ahoic
compared with the RF one. The improvement compared i® motivated by the fact that surface wind speed affects the
the AR and RF models can reach respectively 20% and 15p&rformance of PV modules given its relation with ambient
The improvement values are quite similar for all of the powaemperature. Also, wind conditions are generally related t
plants except for plant P8, for which there is no improvemertioud movement, which affects PV production. Note however
This is the most distant power plant, and the spatial cdiogla that by considering surface wind speed, which is in general
does not reach it. considerably different from wind speeds in upper layershef t

Fig. 5. Densities of the forecasting errors post spatiopaia model for 2
power plants (Kernel estimation). The horizons range fr&min to 6 hours.
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Fig. 8. Data setl>: Distribution of the mean value (over the 6-hour prediction
horizon) of RMSE for the reference model, the spatio-teraparodel (ST)

Fig. 7. Data setl;: RMSE improvement of the spatio-temporal model conwith backward selection, and the spatio-temporal modeh Wwitsso selection.
ditioned by wind speed in comparison with the model withoorditioning.

Each line represents the improvement obtained for a poveert.pl

atmosphere, the aim is not to make an explicit relation wii o JEE L
cloud movement. %0 2 e
The spatio-temporal model with a conditioned wind spee o fg il
parameter was then applied th. Compared to the spatio- onglet
temporal model with fixed parameters, this model shows X e “’:mg’; Chitegiros
reduction in RMSE for the first two hours as shown in figur E I ’ .!
7. The mean value of this improvement is 2% and the mc (P
significant reduction is noted for the first forecasting hou a5 ‘Q 474 'ﬁ°
After two hours, the model with conditioning shows no im Ak 2 Oy @@ [ e
provement compared to the model without conditioning. €he o B
results are promising and show that there is a potential 1 ST e
improving forecast quality by using adequate meteorokalgic 7 2
variables within the model. B o A e i
In the paper [40], the average RMSE improvement of tr o

proposed spatio-temporal model over the reference AR model

was about6% and the maximum RMSE improvement wagig. 9. Data setdy: Map of the power plants. For each plant, the color is
about13%. These values are respectiv&@,% and20% when defined by the number of neighboring plants selected by tresd.a
applying the spatio-temporal model proposed here.

. ] o model (around 28% reduction in average performance). More-

D. The Variable Selection Contribution: Lasso and AIC over, the Lasso variable selection procedure presentsrlowe

In this section the impact of the different variable seteeti Prediction errors than the selection based on the AIC, shgwi
methods is evaluated. Here we consider the second datatBat the Lasso procedure is more efficient (22% reduction in
d> because the high number of power plants amplifies t&¥erage performance).
dimensionality problem. The spatio-temporal model witk th The performance of the Lasso selection variable procedure
variable selection procedure based on the AIC as descriligth also be analyzed by the level of reduction of the dimen-
in part 1lI-B was evaluated. The extension of the model witbionality problem. For each of the power plants of the data se
a selection variable procedure based on Lasso regulanizati,, figure 9 represents the number of neighboring power plants
(part 111-D) was also computed and evaluated on the same déienong the other 135) retained by the Lasso selection. In 75%
setdy. Figure 8 represents the dispersion of the mean valogcases, the number of variables used is less than 30, while
(over all prediction horizons) of the RMSE for the referencthe maximum number used is 57. These numbers show that
model and the spatio-temporal model resulting from the twthe Lasso selection variable procedure is quite successful
variable selection procedures. reducing the dimension of the problem. The results emphasiz

The figure shows that the spatio-temporal model signifine interest for the neighboring plants of improving theligya
cantly reduces prediction errors compared to the referermfethe PV production forecasts.



V. CONCLUSION

(7]

In this paper we proposed a statistical spatio-temporakehod

to improve short-term forecasting of photovoltaic prodict

The non-stationarity issue of the production series was ad-
dressed by a new stationarization process. This processrdem|g]

strated a clear improvement in terms of forecasting erduce

tion in comparison with a case in which raw inputs are used.

The spatio-temporal model was applied to the stationarized
series and showed a significant reduction in forecastingr®rr [9]
compared to regular forecasting techniques. The problem of
high dimension data was also addressed by two different
variable selection procedures for dimension reductione THLO]
Lasso regularization applied to the spatio-temporal model
presents the highest reduction for the forecasts. Moreover
we demonstrate that including the effects of meteoroldgica

variables such as wind speed in the spatio-temporal reisult
an additional reduction of the forecasting error level of P

production.

1]

Further work could investigate beyond the linear modelin ,
of the spatio-temporal data using more complex relatiohs’
like polynomial estimations or splines. The integration of

meteorological data could also be investigated, either as a ¢ ~UUs¢
] H. T. Pedro and C. F. Coimbra, “Assessment of forecgstathniques

parameter of the coefficient estimated in the spatio-tealpo

model, or by integrating sky images obtained by cameras

or satellites. A probabilistic model that uses informatimm

geographically distributed power plants to produce fosexa

could also be investigated.
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