“HC-1+HC-3” a long-term data set of daily solar radiation at surface
Benoît Gschwind, Lucien Wald

To cite this version:

HAL Id: hal-01583336
https://hal-mines-paristech.archives-ouvertes.fr/hal-01583336
Submitted on 7 Sep 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
“HC-1+HC-3” a long-term data set of daily solar radiation at surface

OBJECTIVE

Assessing methods for fusing two databases of surface solar irradiance to get a long-term time-series starting in 1985 and spanning more than 30 years and having the best accuracy possible.

CONTEXT

The HelioClim project of MINES ParisTech aims at producing fields of surface solar downward irradiation (SSI) from satellite images.

- **HelioClim-1.** Daily SSI for the period 1985-2005. From the first generation of the Meteosat series of satellites processed with the Heliosat-2 method.
- **HelioClim-3.** 15 min SSI for the period 2004 up to now. From the second generation of the Meteosat series of satellites processed with the Heliosat-2 method.
- **Access** to the HelioClim databases is given by the SoDa Service (www.soda-pro.com).
- HelioClim-1 and part of HelioClim-3 (2004-2006) are labelled Data Collection of Open Resources for Everyone (Data-CORE) by the GEOSS (Global Earth Observation System of Systems). The GEOSS Data-CORE is a distributed pool of documented data sets with full, open and unrestricted access.
- All HelioClim databases have been validated against measurements performed by pyranometers at ground stations.
- HelioClim-3 is more accurate than HelioClim-1

METHODOLOGY

1. adjust HelioClim-1 (HC1v4) daily irradiation onto HelioClim-3 (HC3v5) daily irradiation for the common period Feb 2004-2005 (23 months),
2. then apply the adjustment onto the entire HC1v4 from 1985 to Jan 2004,
3. then analyse possible improvement in bias and other statistical indicators of bias-adjusted HC1v4 versus original HC1v4 using measurements of daily irradiation performed in 17 ground stations.

Six approaches have been investigated. Each approach may apply to the clearness indices KT as well, i.e. the HC1 KT is adjusted and then the adjusted irradiation HC1 is computed by multiplying KT by the daily irradiation at the top of the atmosphere. A total of 12 (2x6) methods has been tested:

- addition of difference in means,
- ratio of means,
- affine transform
- addition of difference in modes,
- ratio of modes,
- quantile mapping

RESULTS

![Graphs showing original and adjusted HC1v4 data](image)

No method clearly surpasses the others. However, the method ‘quantile mapping’ applied to KT (QMK) exhibits better results than the others for all indicators: standard deviation, root mean square error, correlation coefficient, median and width of histogram of deviations (P60-P40), except the bias for which it is equivalent.

Compared to the original HC1v4, improvement brought by adjusted HC1v4 vs measurements is noticeable though not systematic.

- bias: strongly reduced by more than 40 J/cm² in 6 stations but increased in 3 sites,
- median of errors: strongly reduced in 6 stations but increased in 2 sites,
- standard deviation: reduced in 14 sites and slightly increased in 3 sites,
- correlation coefficient: greater or equal.

CONCLUSION

The fusion of HC1v4 and HC3v5 is feasible in an easy way that can be turned into operation. In most cases, the adjusted HC1v4 performs better than HC1v4 when compared to qualified daily irradiation measured in meteorological networks. It opens the way for a consistent GEOSS Data-CORE of surface solar daily irradiation from 1985 up to 2016 and onwards.