P. Pinson, C. Chevallier, and G. Kariniotakis, Trading Wind Generation From Short-Term Probabilistic Forecasts of Wind Power, IEEE Transactions on Power Systems, vol.22, issue.3, pp.1148-1156, 2007.
DOI : 10.1109/TPWRS.2007.901117

URL : https://hal.archives-ouvertes.fr/hal-00213325

M. A. Matos and R. Bessa, Setting the Operating Reserve Using Probabilistic Wind Power Forecasts, IEEE Transactions on Power Systems, vol.26, issue.2, pp.594-603, 2011.
DOI : 10.1109/TPWRS.2010.2065818

R. Bessa, C. Moreira, B. Silva, and M. Matos, Handling renewable energy variability and uncertainty in power systems operation, Wiley Interdisciplinary Reviews: Energy and Environment, vol.138, issue.2, pp.156-178
DOI : 10.1016/j.ejor.2005.11.057

C. Möhrlen, R. J. Bessa, M. Barthod, G. Goretti, and M. Siefert, Use of forecast uncertainties in the power sector: State-of-the-art of business practices, Proceedings of the 15th International Workshop on Large-Scale Integration of Wind Power into Power Systems as well as on Transmission Networks for Offshore Wind Power Plants, pp.15-17, 2016.

R. Sioshansi and D. Hurlbut, Market protocols in ERCOT and their effect on wind generation, Energy Policy, vol.38, issue.7, pp.3192-3197, 2010.
DOI : 10.1016/j.enpol.2009.07.046

H. Holttinen, M. Milligan, E. Ela, N. Menemenlis, J. Dobschinski et al., Detlefsen, N. Methodologies to determine operating reserves due to increased wind power, IEEE Trans. Sustain. Energy, vol.2012, issue.3, pp.713-723

N. Steffan, P. Du, N. Mago, and S. Sharma, Integrating probabilistic forecasts into the energy management system (EMS) and market management system (MMS) software, Proceedings of the UVIG Forecasting Workshop, pp.20-22, 2017.

M. Matos, R. J. Bessa, C. Gonçalves, L. Cavalcante, V. Miranda et al., Setting the maximum import net transfer capacity under extreme RES integration scenarios, 2016 International Conference on Probabilistic Methods Applied to Power Systems (PMAPS), pp.16-20, 2016.
DOI : 10.1109/PMAPS.2016.7764145

D. Nakafuji, L. Gouveia, and S. Oshiro, Distributed Resource Energy Analysis and Management System (DREAMS) Development for Real-Time Grid Operations, 2016.
DOI : 10.2172/1329714

J. Miettinen, H. Holttinen, J. Ammälä, and M. Piironen, Wind power forecasting at Transmission System Operator's control room, 2015 IEEE Power & Energy Society General Meeting, pp.26-30, 2015.
DOI : 10.1109/PESGM.2015.7286367

P. Storck, E. Grimit, and T. Holger, Determining the value of more accurate wind power forecasting in global electricity markets, Proceedings of the EWEA Technical Workshop on Wind Power Forecasting, pp.1-2, 2015.

T. Koblitz, What's next for wind energy forecasting systems, Proceedings of the EWEA Technical Workshop on Wind Power Forecasting, pp.1-2, 2015.

E. Grimit, Providing uncertainty information to end users in the electric sector, Proceedings of the UVIG Forecasting Workshop, Tutorial on Integration of Uncertainty Forecasts into Power System Operations, pp.20-22, 2017.

R. A. Stine, Bootstrap Prediction Intervals for Regression, Journal of the American Statistical Association, vol.12, issue.392, pp.1026-1031, 1985.
DOI : 10.1214/aoms/1177731788

P. Pinson, Estimation of the Uncertainty in Wind Power Forecasting, 2006.
URL : https://hal.archives-ouvertes.fr/pastel-00002187

J. M. Lewis, Roots of ensemble forecasting. Mon. Weather Rev, pp.1865-1885, 2005.

T. N. Palmer, The economic value of ensemble forecasts as a tool for risk assessment: From days to decades, Quarterly Journal of the Royal Meteorological Society, vol.123, issue.581, pp.747-774, 2002.
DOI : 10.1256/0035900021643593

T. H. Frame, J. Methven, S. L. Gray, and M. H. Ambaum, Flow-dependent predictability of the North Atlantic jet, Geophysical Research Letters, vol.136, issue.10, pp.2411-2416, 2013.
DOI : 10.1002/qj.625

A. Engström and L. Magnusson, Estimating trajectory uncertainties due to flow dependent errors in the atmospheric analysis, Atmospheric Chemistry and Physics, vol.9, issue.22, pp.8857-8867, 2009.
DOI : 10.5194/acp-9-8857-2009

H. Bludszuweit, J. Dominguez-navarro, and A. Llombart, Statistical Analysis of Wind Power Forecast Error, IEEE Transactions on Power Systems, vol.23, issue.3, pp.983-991, 2008.
DOI : 10.1109/TPWRS.2008.922526

B. M. Hodge, E. Ela, and M. Milligan, The distribution of wind power forecasting errors from operational systems, Proceedings of the 10th International Workshop on Large-Scale Integration of Wind Power into Power Systems, pp.25-26, 2011.

O. Jordá and M. Marcellino, Path forecast evaluation, Journal of Applied Econometrics, vol.54, issue.3, pp.635-662, 2010.
DOI : 10.1090/S0002-9947-1943-0012401-3

V. Chew, Simultaneous Prediction Intervals, Technometrics, vol.38, issue.2, pp.323-330, 1968.
DOI : 10.1214/aoms/1177699066

E. Eady, Long waves and cyclone waves, pp.33-52, 1949.
DOI : 10.1111/j.2153-3490.1949.tb01265.x

URL : http://www.tandfonline.com/doi/pdf/10.1080/16000870.2016.1271562

E. S. Epstein, Stochastic dynamic prediction, pp.739-759, 1969.

G. Evensen, Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics, Journal of Geophysical Research, vol.109, issue.Part 4, pp.10143-10162, 1994.
DOI : 10.1175/1520-0493(1981)109<1367:ATILRW>2.0.CO;2

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

P. Thompson and E. Lorenz, Dialogue between Phil Thompson and Ed Lorenz on 31, Am. Meteor Soc. Tape Rec. Interview, vol.1, pp.19-53, 1986.

T. N. Palmer, Extended-Range Atmospheric Prediction and the Lorenz Model, Bulletin of the American Meteorological Society, vol.74, issue.1, pp.49-65, 1993.
DOI : 10.1175/1520-0477(1993)074<0049:ERAPAT>2.0.CO;2

URL : http://journals.ametsoc.org/doi/pdf/10.1175/1520-0477%281993%29074%3C0049%3AERAPAT%3E2.0.CO%3B2

F. Molteni, R. Buizza, and T. N. Palmer, The ECMWF Ensemble Prediction System: Methodology and validation, Quarterly Journal of the Royal Meteorological Society, vol.117, issue.529, pp.73-119, 1996.
DOI : 10.1002/qj.49711951005

Z. Toth and E. Kalnay, Ensemble Forecasting at NMC: The Generation of Perturbations, Bulletin of the American Meteorological Society, vol.74, issue.12, pp.2317-2330, 1993.
DOI : 10.1175/1520-0477(1993)074<2317:EFANTG>2.0.CO;2

M. S. Tracton and E. Kalnay, Operational ensemble prediction at the National Meteorological Center: Practical aspects. Weather Forecast, pp.379-398, 1993.
DOI : 10.1175/1520-0434(1993)008<0379:oepatn>2.0.co;2

H. L. Mitchell and P. L. Houtekamer, An Adaptive Ensemble Kalman Filter, Monthly Weather Review, vol.128, issue.2, pp.416-433, 2000.
DOI : 10.1175/1520-0493(2000)128<0416:AAEKF>2.0.CO;2

P. L. Houtekamer and H. L. Mitchell, A Sequential Ensemble Kalman Filter for Atmospheric Data Assimilation, Monthly Weather Review, vol.129, issue.1, pp.123-137, 2001.
DOI : 10.1175/1520-0493(2001)129<0123:ASEKFF>2.0.CO;2

E. P. Diaconescu and R. Laprise, Singular vectors in atmospheric sciences: A review, Earth-Science Reviews, vol.113, issue.3-4, pp.161-175, 2012.
DOI : 10.1016/j.earscirev.2012.05.005

H. M. Kim and B. J. Jung, Singular vector structure and evolution of a recurving tropical cyclone. Mon. Weather Rev, pp.505-524, 2009.

Z. Toth and E. Kalnay, Ensemble Forecasting at NCEP and the Breeding Method, Monthly Weather Review, vol.125, issue.12, pp.3297-3319, 1997.
DOI : 10.1175/1520-0493(1997)125<3297:EFANAT>2.0.CO;2

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

L. Magnusson, M. Leutbecher, and E. Källén, Comparison between Singular Vectors and Breeding Vectors as Initial Perturbations for the ECMWF Ensemble Prediction System, Monthly Weather Review, vol.136, issue.11, pp.4092-4104, 2008.
DOI : 10.1175/2008MWR2498.1

G. Evensen, The Ensemble Kalman Filter: theoretical formulation and practical implementation, Ocean Dynamics, vol.53, issue.4, pp.343-367, 2003.
DOI : 10.1007/s10236-003-0036-9

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

P. L. Houtekamer and F. Zhang, Review of the ensemble Kalman filter for atmospheric data assimilation. Mon. Weather Rev, pp.4489-4532, 2016.

E. Ott, B. Hunt, I. Szunyogh, A. Zimin, E. Kostelich et al., A local ensemble Kalman filter for atmospheric data assimilation. Tellus A, pp.415-428, 2004.

Z. Meng and F. Zhang, Limited-area ensemble-based data assimilation. Mon. Weather Rev, pp.2025-2045, 2011.
DOI : 10.1175/2011mwr3418.1

R. Buizza, M. Miller, and T. N. Palmer, Stochastic representation of model uncertainties in the ECMWF ensemble prediction system, Quarterly Journal of the Royal Meteorological Society, vol.8, issue.560, pp.2887-2908, 1999.
DOI : 10.1002/qj.49712556006

T. Palmer, R. Buizza, F. Doblas-reyes, T. Jung, M. Leutbecher et al., Weisheimer, A. Stochastic Parametrization and Model Uncertainty, ECMWF Technical Memoranda, vol.ECMWF, 2009.

G. Shutts, A kinetic energy backscatter algorithm for use in ensemble prediction systems, Quarterly Journal of the Royal Meteorological Society, vol.11, issue.612, pp.3079-3102, 2005.
DOI : 10.5194/npg-11-127-2004

C. Möhrlen, Uncertainty in Wind Energy Forecasting, 2004.

C. Möhrlen and J. Jørgensen, chapter The role of ensemble forecasting in integrating renewables into power systems: From theory to real-time applications In Integration of Large-Scale Renewable Energy into Bulk Power Systems. From Planning to Operation, pp.79-134, 2008.

R. Buizza, P. L. Houtekamer, G. Pellerin, Z. Toth, Y. Zhu et al., A Comparison of the ECMWF, MSC, and NCEP Global Ensemble Prediction Systems, Monthly Weather Review, vol.133, issue.5, pp.1076-1097, 2005.
DOI : 10.1175/MWR2905.1

D. J. Stensrud, J. W. Bao, and T. Warner, Using Initial Condition and Model Physics Perturbations in Short-Range Ensemble Simulations of Mesoscale Convective Systems, Monthly Weather Review, vol.128, issue.7, pp.2077-2107, 2000.
DOI : 10.1175/1520-0493(2000)128<2077:UICAMP>2.0.CO;2

C. Lavaysse, M. Carrera, S. Bélair, N. Gagnon, R. Frenette et al., Impact of Surface Parameter Uncertainties within the Canadian Regional Ensemble Prediction System, Monthly Weather Review, vol.141, issue.5, pp.1506-1526, 2013.
DOI : 10.1175/MWR-D-11-00354.1

G. Deng, Y. Zhu, J. Gong, D. Chen, R. Wobus et al., The effects of land surface process perturbations in a global ensemble forecast system, Advances in Atmospheric Sciences, vol.24, issue.1, pp.1199-1208, 2016.
DOI : 10.1175/2008WAF2007053.1

P. B. Emmrich, A gratis two-model-ensemble versus EPS, Fifth Workshop on Meteorological Operational Systems, 1995.

T. Krishnamurti, C. Kishtawal, Z. Zhan, T. Larow, D. Bachiochi et al., Multimodel Ensemble Forecasts for Weather and Seasonal Climate, Journal of Climate, vol.13, issue.23, pp.4196-4216, 2000.
DOI : 10.1175/1520-0442(2000)013<4196:MEFFWA>2.0.CO;2

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

T. M. Hamill, J. S. Whitaker, and X. Wei, Ensemble Reforecasting: Improving Medium-Range Forecast Skill Using Retrospective Forecasts, Monthly Weather Review, vol.132, issue.6, pp.1434-1447, 2004.
DOI : 10.1175/1520-0493(2004)132<1434:ERIMFS>2.0.CO;2

URL : http://citeseerx.ist.psu.edu/viewdoc/download?doi=

D. S. Wilks and T. M. Hamill, Comparison of ensemble-MOS methods using GFS reforecasts. Mon. Weather Rev, pp.2379-2390, 2007.
DOI : 10.1175/mwr3402.1

R. Hagedorn, T. M. Hamill, and J. S. Whitaker, Probabilistic Forecast Calibration Using ECMWF and GFS Ensemble Reforecasts. Part I: Two-Meter Temperatures, Monthly Weather Review, vol.136, issue.7, pp.2608-2619, 2008.
DOI : 10.1175/2007MWR2410.1

T. M. Hamill, G. T. Bates, J. S. Whitaker, D. R. Murray, M. Fiorino et al., NOAA's Second-Generation Global Medium-Range Ensemble Reforecast Dataset, Bulletin of the American Meteorological Society, vol.94, issue.10, pp.1553-1565, 2013.
DOI : 10.1175/BAMS-D-12-00014.1

H. R. Glahn and D. A. Lowry, The Use of Model Output Statistics (MOS) in Objective Weather Forecasting, Journal of Applied Meteorology, vol.11, issue.8, pp.1203-1211, 1972.
DOI : 10.1175/1520-0450(1972)011<1203:TUOMOS>2.0.CO;2

D. S. Wilks, Statistical Methods in the Atmospheric Sciences: An Introduction, 1st ed.; International Geophysics, 1995.

D. S. Wilks, Extending logistic regression to provide full-probability-distribution MOS forecasts, Meteorological Applications, vol.135, issue.3, pp.361-368, 2009.
DOI : 10.1017/CBO9780511617652.010

URL : http://onlinelibrary.wiley.com/doi/10.1002/met.134/pdf

L. D. Monache, T. Nipen, Y. Liu, G. Roux, and R. Stull, Kalman Filter and Analog Schemes to Postprocess Numerical Weather Predictions, Monthly Weather Review, vol.139, issue.11, pp.3554-3570, 2011.
DOI : 10.1175/2011MWR3653.1

F. A. Eckel and L. D. Monache, A hybrid NWP-analog ensemble. Mon. Weather Rev, pp.897-911, 2016.
DOI : 10.1175/mwr-d-15-0096.1

T. Gneiting, A. E. Raftery, A. H. Westveld, and T. Iii-;-goldman, Calibrated Probabilistic Forecasting Using Ensemble Model Output Statistics and Minimum CRPS Estimation, Monthly Weather Review, vol.133, issue.5, pp.1098-1118, 2005.
DOI : 10.1175/MWR2904.1

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

A. E. Raftery, T. Gneiting, F. Balabdaoui, and M. Polakowski, Using Bayesian Model Averaging to Calibrate Forecast Ensembles, Monthly Weather Review, vol.133, issue.5, pp.1155-1174, 2005.
DOI : 10.1175/MWR2906.1

N. Schuhen, T. L. Thorarinsdottir, and T. Gneiting, Ensemble model output statistics for wind vectors. Mon. Weather Rev, pp.3204-3219, 2012.
DOI : 10.1175/mwr-d-12-00028.1

URL : http://arxiv.org/pdf/1201.2612

M. J. Schmeits and K. J. Kok, A Comparison between Raw Ensemble Output, (Modified) Bayesian Model Averaging, and Extended Logistic Regression Using ECMWF Ensemble Precipitation Reforecasts, Monthly Weather Review, vol.138, issue.11, pp.4199-4211, 2010.
DOI : 10.1175/2010MWR3285.1

M. Scheuerer and D. Mmöller, Probabilistic wind speed forecasting on a grid based on ensemble model output statistics, The Annals of Applied Statistics, vol.9, issue.3, pp.1328-1349
DOI : 10.1214/15-AOAS843

URL : http://arxiv.org/pdf/1511.02001

R. Schefzik, T. L. Thorarinsdottir, and T. Gneiting, Uncertainty Quantification in Complex Simulation Models Using Ensemble Copula Coupling, Statistical Science, vol.28, issue.4, pp.616-640, 2013.
DOI : 10.1214/13-STS443SUPP

URL : http://doi.org/10.1214/13-sts443

D. S. Wilks, Multivariate ensemble Model Output Statistics using empirical copulas, Quarterly Journal of the Royal Meteorological Society, vol.135, issue.688, pp.945-952, 2015.
DOI : 10.1175/MWR3402.1

B. Bouallègue, Z. Heppelmann, T. Theis, S. E. Pinson, and P. , Generation of Scenarios from Calibrated Ensemble Forecasts with a Dual-Ensemble Copula-Coupling Approach, Monthly Weather Review, vol.144, issue.12, pp.4737-4750, 2016.
DOI : 10.1175/MWR-D-15-0403.1

J. W. Messner, A. Zeileis, J. Broecker, and G. J. Mayr, Probabilistic wind power forecasts with an inverse power curve transformation and censored regression, Wind Energy, vol.50, issue.8, pp.1753-1766
DOI : 10.1175/2011JAMC2615.1

P. Pinson, Very-short-term probabilistic forecasting of wind power with generalized logit-normal distributions, Journal of the Royal Statistical Society: Series C (Applied Statistics), vol.8, issue.4, pp.61-555, 2012.
DOI : 10.1111/j.1467-9892.1987.tb00425.x

R. Koenker, S. Leorato, F. Peracchi, and . Distributional-vs, Quantile Regression, CEIS Working Paper No, vol.300

S. Foresi and F. Peracchi, The Conditional Distribution of Excess Returns: An Empirical Analysis, Journal of the American Statistical Association, vol.14, issue.430, pp.451-466, 1995.
DOI : 10.1214/aos/1176349940

F. Ziel, C. Croonenbroeck, and D. Ambach, Forecasting wind power ??? Modeling periodic and non-linear effects under conditional heteroscedasticity, Applied Energy, vol.177, pp.285-297, 2016.
DOI : 10.1016/j.apenergy.2016.05.111

URL : http://arxiv.org/abs/1606.00546

J. Dowell, I. Dinwoodie, and D. Mcmillan, Forecasting for offshore maintenance scheduling under uncertainty, Proceedings of the European Safety and Reliability Conference, pp.25-29, 2016.

R. Koenker, Encyclopedia of Environmetrics, 2014.

M. Landry, T. P. Erlinger, D. Patschke, and C. Varrichio, Probabilistic gradient boosting machines for GEFCom2014 wind forecasting, International Journal of Forecasting, vol.32, issue.3, pp.1061-1066, 2016.
DOI : 10.1016/j.ijforecast.2016.02.002

T. Hong, P. Pinson, S. Fan, H. Zareipour, A. Troccoli et al., Probabilistic energy forecasting: Global Energy Forecasting Competition 2014 and beyond, International Journal of Forecasting, vol.32, issue.3, 2016.
DOI : 10.1016/j.ijforecast.2016.02.001

J. Andrade and R. Bessa, Improving Renewable Energy Forecasting with a Grid of Numerical Weather Predictions, IEEE Transactions on Sustainable Energy, 2017.
DOI : 10.1109/TSTE.2017.2694340

G. Anastasiades and P. Mcsharry, Quantile Forecasting of Wind Power Using Variability Indices, Energies, vol.95, issue.2, pp.662-695, 2013.
DOI : 10.1111/1467-9876.00419

URL : http://www.mdpi.com/1996-1073/6/2/662/pdf

L. Cavalcante, R. J. Bessa, M. Reis, and J. Dowell, LASSO vector autoregression structures for very short-term wind power forecasting, Wind Energy, vol.5, issue.2, pp.657-675
DOI : 10.1109/TSTE.2013.2292598

J. Dowell and P. Pinson, Very-Short-Term Probabilistic Wind Power Forecasts by Sparse Vector Autoregression, IEEE Transactions on Smart Grid, vol.7, pp.763-770, 2016.
DOI : 10.1109/TSG.2015.2424078

URL : http://strathprints.strath.ac.uk/53822/1/Dowell_Pinsen_IEEE_TSG_2015_Very_short_term_probablistic_wind_power.pdf

S. Sperati, S. Alessandrini, and L. D. Monache, Gridded Probabilistic Weather Forecasts with an Analog Ensemble, Quarterly Journal of the Royal Meteorological Society, p.2017
DOI : 10.1002/qj.3137

P. Pinson and H. Madsen, Ensemble-based probabilistic forecasting at Horns Rev. Wind Energy, pp.137-155, 2009.
DOI : 10.1002/we.309

G. Papaefthymiou and P. Pinson, Modeling of spatial dependence in wind power forecast uncertainty, Proceedings of the 10th International Conference on Probabilistic Methods Applied to Power Systems, pp.25-29, 2008.

J. K. Møller, M. Zugno, and H. Madsen, Probabilistic Forecasts of Wind Power Generation by Stochastic Differential Equation Models, Journal of Forecasting, vol.5, issue.2, pp.189-205, 2016.
DOI : 10.3390/en5030621

A. Staid, J. P. Watson, R. J. Wets, and D. L. Woodruff, Generating short-term probabilistic wind power scenarios via nonparametric forecast error density estimators, Wind Energy, vol.176, issue.1
DOI : 10.1016/j.apenergy.2016.05.025

M. Clark, S. Gangopadhyay, L. Hay, B. Rajagopalan, and R. Wilby, The Schaake Shuffle: A Method for Reconstructing Space???Time Variability in Forecasted Precipitation and Temperature Fields, Journal of Hydrometeorology, vol.5, issue.1, pp.243-262, 2004.
DOI : 10.1175/1525-7541(2004)005<0243:TSSAMF>2.0.CO;2

J. Tastu, P. Pinson, and H. Madsen, Modeling and Stochastic Learning for Forecasting in High Dimensions; In Lecture Notes in Statistics; Chapter Space-Time Trajectories of Wind Power Generation: Parameterized Precision Matrices Under a Gaussian Copula Approach, pp.267-296, 2015.

J. Mclean, Equivalent Wind Power Curves Deliverable 2.4 of the TradeWind Project, 2008.

H. A. Nielsen, H. Madsen, T. S. Nielsen, J. Badger, G. Giebel et al., Wind power ensemble forecasting, Proceedings of the 2004 Global Windpower Conference and Exhibition, pp.22-25, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00837982

C. Junk, L. Von-bremen, and D. Heinemann, Assessment of probabilistic wind power forecasts for wind farms in Northern Ireland, Proceedings of the EWEA 2012 Annual Event, pp.16-19, 2012.

P. Pinson and G. Kariniotakis, On-line assessment of prediction risk for wind power production forecasts, Wind Energy, vol.7, issue.2, pp.119-132, 2004.
DOI : 10.1002/we.114

G. Giebel, J. Badger, L. Landberg, H. A. Nielsen, T. S. Nielsen et al., Wind Power Prediction Using Ensembles, 2005.

J. B. Bremnes, Probabilistic wind power forecasts using local quantile regression, Wind Energy, vol.7, issue.1, pp.47-54, 2004.
DOI : 10.1002/we.107

J. Juban, L. Fugon, and G. Kariniotakis, Uncertainty estimation of wind power forecasts, Proceedings of the European Wind Energy Conference, p.31, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00506297

T. Nielsen, L. Landberg, and G. Giebel, Prediction of regional wind power, Proceedings of the 2002 Global Wind Power Conference, pp.10-12, 2002.

N. Siebert, Development of Methods for Regional Wind Power Forecasting, Centre for Process Energies and Energy Systems (PERSEE), 2008.
URL : https://hal.archives-ouvertes.fr/tel-00287551

S. Camal, A. Michiorri, G. Kariniotakis, and A. Liebelt, Short-term forecast of automatic frequency restoration reserve from a renewable energy based virtual power plant, Proceedings of the 2017 IEEE PES ISGT Europe Conference, pp.26-29, 2017.

P. Pinson and G. Kariniotakis, Conditional Prediction Intervals of Wind Power Generation, IEEE Transactions on Power Systems, vol.25, issue.4, pp.1845-1856, 2010.
DOI : 10.1109/TPWRS.2010.2045774

URL : https://hal.archives-ouvertes.fr/hal-00614425

S. L. Joslyn and J. Leclerc, Uncertainty forecasts improve weather-related decisions and attenuate the effects of forecast error., Journal of Experimental Psychology: Applied, vol.18, issue.1, pp.126-140, 2012.
DOI : 10.1037/a0025185

N. R. Council, Completing the Forecast: Characterizing and Communicating Uncertainty for Better Decisions Using Weather and Climate Forecasts, 2006.

L. Nadav-greenberg, S. L. Joslyn, and M. U. Taing, Uncertainty Forecasts Improve Decision Making Among Nonexperts, Journal of Cognitive Engineering and Decision Making, vol.25, issue.3, pp.209-227, 2009.
DOI : 10.1037/0033-2909.115.2.228

S. Joslyn and J. Leclerc, The cry wolf effect and weather-related decision making. Risk Anal, pp.385-395, 2015.

S. Joslyn and S. Savelli, Communicating forecast uncertainty: public perception of weather forecast uncertainty, Meteorological Applications, vol.115, issue.2, pp.180-195, 2010.
DOI : 10.1002/met.190

URL : http://onlinelibrary.wiley.com/doi/10.1002/met.190/pdf

J. Leclerc, Communicating Weather and Climate Uncertainty: Exploratory Research in Cognitive Psychology

M. H. Ramos, S. J. Van-andel, and F. Pappenberger, Do probabilistic forecasts lead to better decisions?, Hydrology and Earth System Sciences, vol.17, issue.6, pp.2219-2232, 2013.
DOI : 10.5194/hess-17-2219-2013

URL : https://hal.archives-ouvertes.fr/hal-01132120

S. Joslyn, K. Pak, D. Jones, J. Pyles, and E. Hunt, The effect of probabilistic information on threshold forecasts. Weather Forecast, pp.804-812, 2006.

L. Nadav-greenberg, S. L. Joslyn, and M. U. Taing, The Effect of Uncertainty Visualizations on Decision Making in Weather Forecasting, Journal of Cognitive Engineering and Decision Making, vol.125, issue.2, pp.24-47, 2008.
DOI : 10.1037/0096-3445.125.4.387

S. Joslyn and S. Savelli, The advantages of predictive interval forecasts for non-expert users and the impact of visualizations, Appl. Cogn. Psychol, vol.27, pp.527-541, 2013.

S. L. Joslyn and R. M. Nichols, Probability or frequency? Expressing forecast uncertainty in public weather forecasts, Meteorological Applications, vol.5, issue.1, pp.309-314, 2009.
DOI : 10.1017/CBO9780511808098.041

URL : http://onlinelibrary.wiley.com/doi/10.1002/met.121/pdf

R. E. Morss, J. K. Lazo, and J. L. Demuth, Examining the use of weather forecasts in decision scenarios: results from a US survey with implications for uncertainty communication, Meteorological Applications, vol.83, issue.2, pp.149-162, 2010.
DOI : 10.1017/CBO9780511819322

Y. Zhang, J. Wang, and X. Wang, Review on probabilistic forecasting of wind power generation, Renewable and Sustainable Energy Reviews, vol.32, pp.255-270, 2014.
DOI : 10.1016/j.rser.2014.01.033

R. J. Bessa, From marginal to simultaneous prediction intervals of wind power, 2015 18th International Conference on Intelligent System Application to Power Systems (ISAP), pp.14-16, 2015.
DOI : 10.1109/ISAP.2015.7325536

R. T. Rockafellar and R. J. Wets, Scenarios and Policy Aggregation in Optimization Under Uncertainty, Mathematics of Operations Research, vol.16, issue.1, pp.119-147, 1991.
DOI : 10.1287/moor.16.1.119

URL : http://pure.iiasa.ac.at/2933/1/WP-87-119.pdf

A. E. Raftery, Use and communication of probabilistic forecasts, Statistical Analysis and Data Mining: The ASA Data Science Journal, vol.27, issue.6, pp.397-410
DOI : 10.1016/j.ijforecast.2009.12.015

URL : http://arxiv.org/abs/1408.4812

F. Golestaneh, P. Pinson, R. Azizipanah-abarghooee, and H. B. Gooi, Ellipsoidal prediction regions for multivariate uncertainty characterization, 2017.

P. Pinson, H. Nielsen, H. Madsen, and G. Kariniotakis, Skill forecasting from ensemble predictions of wind power, Applied Energy, vol.86, issue.7-8, pp.1326-1334, 2009.
DOI : 10.1016/j.apenergy.2008.10.009

URL : https://hal.archives-ouvertes.fr/hal-00812349

G. A. Holton, Defining risk, Financ. Anal. J, vol.60, issue.6, 2004.

H. A. Nielsen, H. Madsen, and T. S. Nielsen, Using quantile regression to extend an existing wind power forecasting system with probabilistic forecasts, Wind Energy, vol.83, issue.1-2, pp.95-108, 2006.
DOI : 10.1515/9781400874668

C. Gallego-castillo, A. Cuerva-tejero, and O. Lopez-garcia, A review on the recent history of wind power ramp forecasting, Renewable and Sustainable Energy Reviews, vol.52, pp.1148-1157, 2015.
DOI : 10.1016/j.rser.2015.07.154

P. Mcsharry, L. Von-bremen, E. Holmgren, N. Siebert, G. Kariniotakis et al., Predictability Measure and Communication of Information on Uncertainty to Forecast Users, Deliverable DP-6, vol.6, 2012.

J. Zhao, S. Abedi, M. He, P. Du, S. Sharma et al., Quantifying Risk of Wind Power Ramps in ERCOT, IEEE Transactions on Power Systems, 2017.
DOI : 10.1109/TPWRS.2017.2678761

J. Wang, A. Botterud, R. Bessa, H. Keko, V. Miranda et al., Wind power forecasting uncertainty and unit commitment, Applied Energy, vol.88, issue.11, pp.4014-4023, 2011.
DOI : 10.1016/j.apenergy.2011.04.011

D. Silva, A. De-resende, L. Da-fonseca-manso, L. Billinton, and R. , Well-being analysis for composite generation and transmission systems, IEEE Trans. Power Syst, vol.19, pp.1763-1770, 2004.

R. J. Bessa, M. A. Matos, I. C. Costa, L. Bremermann, I. G. Franchin et al., Reserve Setting and Steady-State Security Assessment Using Wind Power Uncertainty Forecast: A Case Study, IEEE Transactions on Sustainable Energy, vol.3, issue.4, pp.827-836
DOI : 10.1109/TSTE.2012.2199340

N. Menemenlis, M. Huneault, and A. Robitaille, Computation of Dynamic Operating Balancing Reserve for Wind Power Integration for the Time-Horizon 1?48 Hours, IEEE Trans. Sustain. Energy, vol.2012, issue.3, pp.692-702

D. Sari, Y. Lee, S. Ryan, and D. Woodruff, Statistical metrics for assessing the quality of wind power scenarios for stochastic unit commitment, Wind Energy, vol.22, issue.5, pp.873-893
DOI : 10.1093/imanum/22.3.329

R. Bessa, V. Miranda, A. Botterud, and J. Wang, ???Good??? or ???bad??? wind power forecasts: a relative concept, Wind Energy, vol.55, issue.5, pp.625-636, 2011.
DOI : 10.1109/TSP.2007.896065

URL : http://onlinelibrary.wiley.com/doi/10.1002/we.444/pdf

T. Gneiting, L. Stanberry, E. Grimit, L. Held, and N. Johnson, Assessing probabilistic forecasts of multivariate quantities, with an application to ensemble predictions of surface winds, TEST, vol.28, issue.2, pp.211-235, 2008.
DOI : 10.1007/978-94-010-1276-8_10

M. Scheuerer and T. M. Hamill, Variogram-based proper scoring rules for probabilistic forecasts of multivariate quantities. Mon. Weather Rev, pp.1321-1334, 2015.

R. Bessa, On the quality of the Gaussian copula for multi-temporal decision-making problems, 2016 Power Systems Computation Conference (PSCC), pp.20-24, 2016.
DOI : 10.1109/PSCC.2016.7541001

P. Pinson and R. Girard, Evaluating the quality of scenarios of short-term wind power generation, Applied Energy, vol.96, pp.12-20, 2012.
DOI : 10.1016/j.apenergy.2011.11.004

URL : https://hal.archives-ouvertes.fr/hal-00654836

A. Botterud, J. Wang, J. Valenzuela, R. Bessa, H. Keko et al., Unit commitment and operating reserves with probabilistic wind power forecasts, 2011 IEEE Trondheim PowerTech, pp.19-23, 2011.
DOI : 10.1109/PTC.2011.6019263

C. Möhrlen and J. Jorgensen, Reserve forecasting for enhanced renewable energy management, Proceedings of the 12th International Workshop on Large-Scale Integration of Wind Power into Power Systems as well as on Transmission Networks for Offshore Wind Farms, pp.11-13, 2014.

A. Botterud, J. Wang, Z. Zhou, R. Bessa, H. Keko et al., Wind Power Trading Under Uncertainty in LMP Markets, IEEE Transactions on Power Systems, vol.27, issue.2, pp.894-903, 2012.
DOI : 10.1109/TPWRS.2011.2170442

A. Rodriguez, Wind generation forecasting at REE, Proceedings of the Workshop on Experiences in using Wind Power Predictions and Gaps in Forecasting Research, 2016.

E. Gogolou, Significance of the forecast in the short term power trading, Proceedings of the Workshop on Experiences in using Wind Power Predictions and Gaps in Forecasting Research, 2016.

M. Pahlow, C. Möhrlen, and J. Jørgensen, Chapter Application of cost functions for large-scale integration of wind power using a multi-scheme ensemble prediction technique, Optimization Advances in Electric Power Systems, pp.151-180, 2009.

C. J. Dent, J. W. Bialek, and B. Hobbs, Opportunity Cost Bidding by Wind Generators in Forward Markets: Analytical Results, IEEE Transactions on Power Systems, vol.26, issue.3, pp.1600-1608, 2011.
DOI : 10.1109/TPWRS.2010.2100412

URL : http://dro.dur.ac.uk/11684/1/11684.pdf?DDD10+DDC189+mjww84+jxmh78+d700tmt

C. Möhrlen, M. Pahlow, and J. Jørgensen, Investigation of various trading strategies for wind and solar power developed for the new EEG 2012 law, Zeitschrift f??r Energiewirtschaft, vol.31, issue.1, pp.9-25, 2012.
DOI : 10.1175/2009JAMC2058.1

M. Jansen and M. Speckmann, Wind turbine participation on control reserve markets, Proceedings of the European Wind Energy Conference and Exhibition, pp.4-7, 2013.

E. Castronuovo, J. Usaola, R. Bessa, M. Matos, I. Costa et al., An integrated approach for optimal coordination between wind power and hydro pumping storage, pp.829-852
DOI : 10.1002/we.1600

URL : http://hal.inria.fr/docs/00/80/27/81/PDF/wind-storage_Castronuovo_et_al.pdf

P. Haessig, B. Multon, H. B. Ahmed, S. Lascaud, and P. Bondon, Energy storage sizing for wind power: impact of the autocorrelation of day-ahead forecast errors, Wind Energy, vol.9, issue.3, pp.43-57
DOI : 10.1109/MCSE.2007.55

URL : https://hal.archives-ouvertes.fr/hal-00863901

B. P. Hayes and M. Prodanovic, State Forecasting and Operational Planning for Distribution Network Energy Management Systems, IEEE Transactions on Smart Grid, vol.7, issue.2, pp.1002-1011, 2016.
DOI : 10.1109/TSG.2015.2489700

F. Capitanescu, Critical review of recent advances and further developments needed in AC optimal power flow, Electric Power Systems Research, vol.136, pp.57-68, 2016.
DOI : 10.1016/j.epsr.2016.02.008

T. Soares, R. Bessa, P. Pinson, and H. Morais, Active Distribution Grid Management based on Robust AC Optimal Power Flow, IEEE Transactions on Smart Grid, 2017.
DOI : 10.1109/TSG.2017.2707065

E. Union, Report on Uncertainty Modeling, 2013.

I. Antoniadou, N. Dervilis, E. P. Maguire, and K. Worden, Aspects of structural health and condition monitoring of offshore wind turbines, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.4, issue.5-6, pp.1-14, 2015.
DOI : 10.1109/TSTE.2012.2212470

V. M. Catterson, D. Mcmillan, I. Dinwoodie, M. Revie, J. Dowell et al., An economic impact metric for evaluating wave height forecasters for offshore wind maintenance access, Wind Energy, vol.5, issue.4, pp.199-212
DOI : 10.1016/0169-2070(89)90012-5

URL : http://strathprints.strath.ac.uk/51047/1/Catterson_etal_WE_2015_An_economic_impact_metric_for_evaluating_wave_hight.pdf

F. Besnard, M. Patriksson, A. Stromberg, A. Wojciechowski, K. Fischer et al., A stochastic model for opportunistic maintenance planning of offshore wind farms, 2011 IEEE Trondheim PowerTech, pp.19-23, 2011.
DOI : 10.1109/PTC.2011.6019376

D. Macleod, M. Davis, and P. Doblas-reyes, Modelling Wind Energy Generation Potential on Seasonal Timescales With Impact Surfaces, SPECS Technical Note, vol.3, 2014.

J. Schmidt, R. Cancella, and A. O. Junior, Combing Windpower and Hydropower to Decrease Seasonal and Inter-Annual Availability of Renewable Energy Sources in Brazil, 2014.

V. Torralba, F. J. Doblas-reyes, D. Macleod, I. Christel, and M. Davis, Seasonal Climate Prediction: A New Source of Information for the Management of Wind Energy Resources, Journal of Applied Meteorology and Climatology, vol.56, issue.5, pp.2017-1231
DOI : 10.1175/JAMC-D-16-0204.s1

P. Sen and J. Singer, Large Sample Methods in Statistics: An Introduction with Applications, 1994.
DOI : 10.1007/978-1-4899-4491-7

A. Pircalabu, T. Hvolby, J. Jung, and E. Høg, Joint price and volumetric risk in wind power trading: A copula approach, Energy Economics, vol.62, pp.139-154, 2017.
DOI : 10.1016/j.eneco.2016.11.023

R. T. Clemen and T. Reilly, Correlations and Copulas for Decision and Risk Analysis, Management Science, vol.45, issue.2, pp.208-224, 1999.
DOI : 10.1287/mnsc.45.2.208

V. R. Jose and R. L. Winkler, Evaluating Quantile Assessments, Operations Research, vol.57, issue.5, pp.1287-1297, 2009.
DOI : 10.1287/opre.1080.0665

R. L. Keeney, Common Mistakes in Making Value Trade-Offs, Operations Research, vol.50, issue.6, pp.935-945, 2002.
DOI : 10.1287/opre.50.6.935.357

E. U. Weber and E. J. Johnson, Chapter Decisions Under Uncertainty: Psychological, Economic, and Neuroeconomic Explanations of Risk Preference In Neuroeconomics: Decision Making and the Brain, pp.127-144, 2008.

J. S. Rodrigo, L. F. Paredes, N. Stoffels, and L. Von-bremen, Wind power predictability assessment from large to local scale, Proceedings of the European Wind Energy Conference, pp.4-7, 2013.

G. Kariniotakis, I. Marti, D. Casas, and P. Pinson, What performance can be expected by short-term wind power prediction models depending on site characteristics?, Proceedings of the European Wind Energy Conference, pp.22-25, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00529266

K. Laquaine, R. Girard, and G. Kariniotakis, Assessment of wind power predictability as a decision factor in the investment phase of wind farms, Appl. Energy, vol.101, pp.609-617, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00734082

M. Uslar, M. Specht, C. Dänekas, J. Trefke, S. Rohjans et al., Standardization in Smart Grids. Introduction to IT-Related Methodologies, Architectures and Standards, 2013.
DOI : 10.1007/978-3-642-34916-4

N. Steffan, P. Du, N. Mago, and S. Sharma, Recent ERCOT developments in applications of uncertainty forecasts to system operations, Proceedings of the 2017 UVIG Forecasting Workshop, Tutorial on Integration of Uncertainty Forecasts into Power System Operations, pp.20-22, 2017.

S. Siblot and A. Bendaoud, Wind power forecasting in a French context. Meteorological feedback, Proceedings of the IEA Wind Task 36 Forecasting: Workshop on Experiences and Research Gaps, 2016.

A. Plus, Advanced Tools for the Management of Electricity Grids with Large-Scale Wind Generation Project Available online: https://www.anemos-plus, 2011.

G. Kariniotakis, M. Matos, and V. Miranda, Assessment of the benefits from advanced load & wind power forecasting in autonomous power systems, Proceedings of the 1999 European Wind Energy Conference, Wind Energy for the Next Millennium, pp.1-5, 1999.
URL : https://hal.archives-ouvertes.fr/hal-00544846

D. Macleod, V. Torralba, M. Davis, and F. Doblas-reyes, Transforming climate model output to forecasts of wind power production: How much resolution is enough? Meteorol. Appl, 2017.

M. Pantel and P. Mancarella, Influence of extreme weather and climate change on the resilience of power systems: Impacts and possible mitigation strategies, Electric Power Systems Research, vol.127, pp.259-270, 2015.
DOI : 10.1016/j.epsr.2015.06.012