Ductile fracture of a metal matrix composite studied using 3D numerical modeling of void nucleation and coalescence

Abstract : A finite element analysis of large 3D microstructures of randomly distributed particles is proposed to investigate the influence of particle debonding and fragmentation on void coalescence. This analysis is possible thanks to recent developments in parallel automatic remeshing techniques tailored for simulations of microstructures undergoing large deformations. These techniques are extended herein to model void nucleation by particle debonding and fragmentation. Micromechanical simulations of a model material with 20% particle volume fraction show that void nucleation leads to an early plastic strain localization micromechanism that favors void coalescence and reduces ductility significantly.
Type de document :
Article dans une revue
Engineering Fracture Mechanics, Elsevier, 2018, 189, pp.110-132. 〈10.1016/j.engfracmech.2017.10.027〉
Liste complète des métadonnées

https://hal-mines-paristech.archives-ouvertes.fr/hal-01629229
Contributeur : Brigitte Hanot <>
Soumis le : lundi 6 novembre 2017 - 11:05:33
Dernière modification le : mardi 27 mars 2018 - 16:06:16

Identifiants

Collections

Citation

Modesar Shakoor, Marc Bernacki, Pierre-Olivier Bouchard. Ductile fracture of a metal matrix composite studied using 3D numerical modeling of void nucleation and coalescence. Engineering Fracture Mechanics, Elsevier, 2018, 189, pp.110-132. 〈10.1016/j.engfracmech.2017.10.027〉. 〈hal-01629229〉

Partager

Métriques

Consultations de la notice

102