F. Hannard, T. Pardoen, E. Maire, C. L. Bourlot, R. Mokso et al., Characterization and micromechanical modelling of microstructural heterogeneity effects on ductile fracture of 6xxx aluminium alloys, Acta Materialia, vol.103, 2016.
DOI : 10.1016/j.actamat.2015.10.008

URL : https://hal.archives-ouvertes.fr/hal-01523721

A. Hosokawa, D. S. Wilkinson, J. Kang, M. Kobayashi, and H. Toda, Void growth and coalescence in model materials investigated by high-resolution X-ray microtomography, International Journal of Fracture, vol.56, issue.12, pp.51-66, 2013.
DOI : 10.1016/j.actamat.2008.02.027

M. Kaye, C. Puncreobutr, P. D. Lee, D. S. Balint, T. Connolley et al., A new parameter for modelling three-dimensional damage evolution validated by synchrotron tomography, Acta Materialia, vol.61, issue.20, pp.7616-7623, 2013.
DOI : 10.1016/j.actamat.2013.08.065

T. F. Morgeneyer, T. Taillandier-thomas, L. Helfen, T. Baumbach, I. Sinclair et al., In situ 3-D observation of early strain localization during failure of thin Al alloy (2198) sheet, Acta Materialia, vol.69, pp.78-91, 2014.
DOI : 10.1016/j.actamat.2014.01.033

URL : https://hal.archives-ouvertes.fr/hal-00952176

D. Seo, H. Toda, M. Kobayashi, K. Uesugi, A. Takeuchi et al., Three-Dimensional Investigation of Void Coalescence in Free-Cutting Steel using X-ray Tomography, Three-Dimensional Investigation of Void Coalescence in Free-Cutting Steel using X-ray Tomography, pp.1483-1488, 2015.
DOI : 10.2355/isijinternational.55.1483

A. A. Benzerga and J. B. Leblond, Ductile Fracture by Void Growth to Coalescence, Advances in Applied Mechanics, vol.44, pp.169-305, 2010.
DOI : 10.1016/S0065-2156(10)44003-X

A. Pineau, A. Benzerga, and T. Pardoen, Failure of metals I: Brittle and ductile fracture, Acta Materialia, vol.107, pp.424-483, 2016.
DOI : 10.1016/j.actamat.2015.12.034

URL : https://hal.archives-ouvertes.fr/hal-01308255

A. L. Gurson, Plastic Flow and Fracture Behavior of Ductile Materials Incorporating Void Nucleation, Growth, and Interaction, 1975.

M. Gologanu, J. Leblond, and J. Devaux, Approximate models for ductile metals containing non-spherical voids???Case of axisymmetric prolate ellipsoidal cavities, Journal of the Mechanics and Physics of Solids, vol.41, issue.11, pp.1723-1754, 1993.
DOI : 10.1016/0022-5096(93)90029-F

P. Castañeda and M. Zaidman, Constitutive models for porous materials with evolving microstructure, Journal of the Mechanics and Physics of Solids, vol.42, issue.9, pp.1459-149710, 1994.
DOI : 10.1016/0022-5096(94)90005-1

K. Nahshon and J. Hutchinson, Modification of the Gurson Model for shear failure, European Journal of Mechanics - A/Solids, vol.27, issue.1, pp.1-17, 2008.
DOI : 10.1016/j.euromechsol.2007.08.002

M. Torki, C. Tekoglu, J. Leblond, and A. Benzerga, Theoretical and numerical analysis of void coalescence in porous ductile solids under arbitrary loadings, International Journal of Plasticity, vol.91, pp.160-181, 2017.
DOI : 10.1016/j.ijplas.2017.02.011

URL : https://hal.archives-ouvertes.fr/hal-01480131

A. A. Benzerga and J. Besson, Plastic potentials for anisotropic porous solids, European Journal of Mechanics - A/Solids, vol.20, issue.3, pp.397-434, 2001.
DOI : 10.1016/S0997-7538(01)01147-0

J. Besson and C. , An extension of the Green and Gurson models to kinematic hardening, Mechanics of Materials, vol.35, issue.1-2, pp.1-18, 2003.
DOI : 10.1016/S0167-6636(02)00169-2

U. Borg, C. F. Niordson, and J. W. Kysar, Size effects on void growth in single crystals with distributed voids, International Journal of Plasticity, vol.24, issue.4, 2008.
DOI : 10.1016/j.ijplas.2007.07.015

T. Cao, M. Mazì-ere, K. Danas, and J. Besson, A model for ductile damage prediction at low stress triaxialities incorporating void shape change and void rotation, International Journal of Solids and Structures, vol.63, pp.240-263, 2015.
DOI : 10.1016/j.ijsolstr.2015.03.003

URL : https://hal.archives-ouvertes.fr/hal-01165304

J. Dahl, K. L. Nielsen, and V. Tvergaard, Effect of Contact Conditions on Void Coalescence at Low Stress Triaxiality Shearing, Journal of Applied Mechanics, vol.18, issue.2
DOI : 10.1016/0022-5096(90)90028-3

D. Fabrègue and T. Pardoen, A constitutive model for elastoplastic solids containing primary and secondary voids, Journal of the Mechanics and Physics of Solids, vol.56, issue.3, 2008.
DOI : 10.1016/j.jmps.2007.07.008

Y. Charles, R. Estevez, Y. Bréchet, and E. Maire, Modelling the competition between interface debonding and particle fracture using a plastic strain dependent cohesive zone, Engineering Fracture Mechanics, vol.77, issue.4
DOI : 10.1016/j.engfracmech.2009.11.012

URL : https://hal.archives-ouvertes.fr/hal-00528006

P. Ganguly and W. J. Poole, Rearrangement of local stress and strain fields due to damage initiation in a model composite system, Computational Materials Science, vol.34, issue.2, 2005.
DOI : 10.1016/j.commatsci.2004.12.062

N. A. Giang, M. Kuna, and G. Hütter, Influence of carbide particles on crack initiation and propagation with competing ductile-brittle transition in ferritic steel, Theoretical and Applied Fracture Mechanics
DOI : 10.1016/j.tafmec.2017.05.015

C. Mcveigh, F. Vernerey, W. K. Liu, B. Moran, and G. B. Olson, An interactive micro-void shear localization mechanism in high strength steels, Journal of the Mechanics and Physics of Solids, vol.55, issue.2, pp.225-244, 2007.
DOI : 10.1016/j.jmps.2006.08.002

A. Eckschlager, W. Han, and H. Böhm, A unit cell model for brittle fracture of particles embedded in a ductile matrix, Computational Materials Science, vol.25, issue.1-2, pp.85-91, 2002.
DOI : 10.1016/S0927-0256(02)00252-5

J. Bandstra and D. Koss, On the influence of void clusters on void growth and coalescence during ductile fracture, Acta Materialia, vol.56, issue.16, pp.4429-4439, 2008.
DOI : 10.1016/j.actamat.2008.05.009

F. Fritzen, S. Forest, T. Böhlke, D. Kondo, and T. Kanit, Computational homogenization of elasto-plastic porous metals, International Journal of Plasticity, vol.29, 2012.
DOI : 10.1016/j.ijplas.2011.08.005

URL : https://hal.archives-ouvertes.fr/hal-00645498

M. S. Greene, Y. Liu, W. Chen, and W. K. Liu, Computational uncertainty analysis in multiresolution materials via stochastic constitutive theory, Computer Methods in Applied Mechanics and Engineering, vol.200, issue.1

K. Matou?, M. G. Geers, V. G. Kouznetsova, and A. Gillman, A review of predictive nonlinear theories for multiscale modeling of heterogeneous materials, Journal of Computational Physics, vol.330, 2017.
DOI : 10.1016/j.jcp.2016.10.070

E. Roux, M. Bernacki, and P. Bouchard, A level-set and anisotropic adaptive remeshing strategy for the modeling of void growth under large plastic strain, Computational Materials Science, vol.68, pp.32-46, 2013.
DOI : 10.1016/j.commatsci.2012.10.004

URL : https://hal.archives-ouvertes.fr/hal-00756435

M. Shakoor, M. Bernacki, and P. Bouchard, A new body-fitted immersed volume method for the modeling of ductile fracture at the microscale: Analysis of void clusters and stress state effects on coalescence, Engineering Fracture Mechanics, vol.147, pp.398-417, 2015.
DOI : 10.1016/j.engfracmech.2015.06.057

URL : https://hal.archives-ouvertes.fr/hal-01181257

E. Roux, M. Shakoor, M. Bernacki, and P. Bouchard, A new finite element approach for modelling ductile damage void nucleation and growth???analysis of loading path effect on damage mechanisms, Modelling and Simulation in Materials Science and Engineering, vol.22, issue.7
DOI : 10.1088/0965-0393/22/7/075001

URL : https://hal.archives-ouvertes.fr/hal-01090403

P. Ludwik, Elemente der technologischen Mechanik, 1909.
DOI : 10.1007/978-3-662-40293-1

B. J. Lee and M. E. Mear, Stress concentration induced by an elastic spheroidal particle in a plastically deforming solid, Journal of the Mechanics and Physics of Solids, vol.47, issue.6, pp.1301-1336, 1999.
DOI : 10.1016/S0022-5096(98)00104-5

D. Boffi, F. Brezzi, L. F. Demkowicz, R. G. Durán, R. S. Falk et al., Mixed Finite Elements, Compatibility Conditions, and Applications, 2008.

R. H. Wagoner and J. L. Chenot, Metal Forming Analysis, 2001.

M. Shakoor, P. Bouchard, and M. Bernacki, An adaptive level-set method with enhanced volume conservation for simulations in multiphase domains, International Journal for Numerical Methods in Engineering, vol.5, issue.1, pp.555-576, 2017.
DOI : 10.1007/s12289-011-1030-2

URL : https://hal.archives-ouvertes.fr/hal-01504468

M. Shakoor, B. Scholtes, P. Bouchard, and M. Bernacki, An efficient and parallel level set reinitialization method ??? Application to micromechanics and microstructural evolutions, Applied Mathematical Modelling, vol.39, issue.23-24, pp.23-24
DOI : 10.1016/j.apm.2015.03.014

URL : https://hal.archives-ouvertes.fr/hal-01139858

C. Gruau and T. Coupez, 3D tetrahedral, unstructured and anisotropic mesh generation with adaptation to natural and multidomain metric, Computer Methods in Applied Mechanics and Engineering, vol.194, issue.48-49, pp.48-49, 2005.
DOI : 10.1016/j.cma.2004.11.020

URL : https://hal.archives-ouvertes.fr/hal-00517639

D. Quan, T. Toulorge, E. Marchandise, J. Remacle, and G. Bricteux, Anisotropic mesh adaptation with optimal convergence for finite elements using embedded geometries, Computer Methods in Applied Mechanics and Engineering, vol.268, pp.65-81, 2014.
DOI : 10.1016/j.cma.2013.09.007

B. Scholtes, M. Shakoor, A. Settefrati, P. Bouchard, N. Bozzolo et al., New finite element developments for the full field modeling of microstructural evolutions using the level-set method, Computational Materials Science, vol.109, pp.388-398, 2015.
DOI : 10.1016/j.commatsci.2015.07.042

URL : https://hal.archives-ouvertes.fr/hal-01479197

S. Osher and J. A. Sethian, Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations, Journal of Computational Physics, vol.79, issue.1, pp.12-49, 1988.
DOI : 10.1016/0021-9991(88)90002-2

URL : http://www.ann.jussieu.fr/~frey/papers/levelsets/Osher S., Fronts propagating with curvature dependent speed.pdf

N. Sukumar, D. Chopp, N. Moës, and T. Belytschko, Modeling holes and inclusions by level sets in the extended finite-element method, Computer Methods in Applied Mechanics and Engineering, vol.190, issue.46-47, pp.46-47, 2001.
DOI : 10.1016/S0045-7825(01)00215-8

URL : https://hal.archives-ouvertes.fr/hal-01007065

S. Moorthy and S. Ghosh, A Voronoi Cell finite element model for particle cracking in elastic-plastic composite materials, Computer Methods in Applied Mechanics and Engineering, vol.151, issue.3-4, pp.3-4, 1998.
DOI : 10.1016/S0045-7825(97)00160-6

A. Buljac, M. Shakoor, J. Neggers, M. Bernacki, P. Bouchard et al., Numerical validation framework for micromechanical simulations based on synchrotron 3D imaging, Computational Mechanics, vol.45, issue.48???49, pp.2017-419
DOI : 10.1016/j.euromechsol.2013.11.006

URL : https://hal.archives-ouvertes.fr/hal-01480980

M. Shakoor, A. Buljac, J. Neggers, F. Hild, T. F. Morgeneyer et al., On the choice of boundary conditions for micromechanical simulations based on 3D??imaging, International Journal of Solids and Structures, vol.112, pp.1-14, 2017.
DOI : 10.1016/j.ijsolstr.2017.02.018

URL : https://hal.archives-ouvertes.fr/hal-01471645

Y. Bao and T. Wierzbicki, On fracture locus in the equivalent strain and stress triaxiality space, International Journal of Mechanical Sciences, vol.46, issue.1, pp.81-98, 2004.
DOI : 10.1016/j.ijmecsci.2004.02.006

Y. Bao and T. Wierzbicki, A Comparative Study on Various Ductile Crack Formation Criteria, Journal of Engineering Materials and Technology, vol.5, issue.3, 2004.
DOI : 10.1115/IMECE2003-55112

L. Babout, E. Maire, J. Buffì-ere, and R. Fougères, Characterization by X-ray computed tomography of decohesion, porosity growth and coalescence in model metal matrix composites, Acta Materialia, vol.49, issue.11, pp.2055-2063, 2001.
DOI : 10.1016/S1359-6454(01)00104-5

URL : https://hal.archives-ouvertes.fr/hal-00475312

L. Babout, E. Maire, and R. Fougères, Damage initiation in model metallic materials: X-ray tomography and modelling, Acta Materialia, vol.52, issue.8, 2004.
DOI : 10.1016/j.actamat.2004.02.001

URL : https://hal.archives-ouvertes.fr/hal-00474482

L. Morin, J. Leblond, A. A. Benzerga, and D. Kondo, A unified criterion for the growth and coalescence of microvoids, Journal of the Mechanics and Physics of Solids, vol.97, 2016.
DOI : 10.1016/j.jmps.2016.01.013

URL : https://hal.archives-ouvertes.fr/hal-01668487