T. Sakai, N. Oguma, and A. Morikawa, Microscopic and nanoscopic observations of metallurgical structures around inclusions at interior crack initiation site for a bearing steel in very high-cycle fatigue, Fatigue Fract Engn Mater Struct, vol.00, pp.1-10, 2015.

T. Naito, H. Ueda, and M. Kikuchi, Fatigue behavior of carburized steel with internal oxides and non-martensitic microstructure near the surface, Metallurgical Transactions A, vol.15, pp.1431-1436, 1984.

Y. Murakami, T. Nomoto, and T. Ueda, Factors influencing the mechanism of superlong fatigue failure in steels, Fatigue Fract Engng Mater Struct, vol.22, p.590, 1999.

Y. Li, L. Zhang, and Y. Fei, On the formation mechanisms of fine granular area (FGA) on the fracture surface for high strength steels in the VHCF regime, International Journal of Fatigue, vol.82, p.410, 2016.

H. Mughrabi, Microstructural mechanisms of cyclic deformation, fatigue, crack initiation, and early crack growth, Phil Trans, vol.373, pp.1-21, 2015.

T. Sakai and Y. Sato, Characteristics S-N properties of high carbon chromium bearing steel under axial loading in long life fatigue

, Fatigue Fract Engn Mater Struct, vol.25, pp.765-773, 2002.

Y. Murakami, Metal Fatigue: Effects of Small Defects and Nonmetallic Inclusions, 2002.

K. Shiozawa, Y. Morii, and S. Nishino, Subsurface crack initiation and propagation mechanism in high-strength steel in a very high cycle fatigue regime, International Journal of Fatigue, vol.28, pp.1521-1532, 2006.

Y. Ochi,

T. Matsumura, High-cycle rotating bending fatigue property in very long-life regime of high-strength steels, FFEMS, vol.25, pp.823-830, 2002.

W. Li and P. Wang, Evaluation of Threshold Condition of Interior Annular Crack Growth in Gigacycle Regime, Applied Mechanics and Materials, vol.459, pp.65-69, 2014.

P. Grad, B. Reuscher, and A. Brodyanski, Mechanism of fatigue crack initiation and propagation in the very high cycle fatigue regime of high-strength steels, Scripta Materialia, vol.67, p.841, 2012.

G. Chai, T. Forsman, and F. Gustavsson, Formation of fine grained area in martensitic steel during very high cycle fatigue, Fatigue Fract Engn Mater Struct, vol.38, pp.1315-1323, 2015.

S. X. Li, Effects on inclusions on very high cycle fatigue properties of high strength steels, International Materials Reviews, vol.57, pp.92-114, 2012.

Y. Li and L. Zhang, On the formation mechanisms of fine granular area (FGA) on the fracture surface for high strength steels in the VHCF regime, International Journal of Fatigue, vol.82, pp.402-410, 2015.

T. Nakamura, H. Oguma, and Y. Shinohara, The effect of vacuum-like environment inside subsurface fatigue crack on the formation of ODA fracture surface in high strength steel, Procedia Engineering, vol.2, pp.2121-2129, 2010.

D. Spriestersbach, A. Brodyanski, J. Lösch, M. Kopnarski, and E. Kerscher, Very high cycle fatigue of high-strength steels: Crack initiation by FGA formation investigated at artificial defects, Structural Integrity Procedia ECF21, 2016.

Y. Hong and Z. Lei, Propensities of crack interior initiation and early growth for very-highcycle fatigue of high strength steels, International Journal of Fatigue, vol.58, p.151, 2014.

A. Zhao, J. Xie, and C. Sun, Effects of strength level and loading frequency on very-high-cycle fatigue behavior for a bearing steel, International Journal of Fatigue, vol.38, pp.46-56, 2012.

T. Ogawa, S. E. Stanzl-tschegg, and B. M. Schönbauer, A fracture mechanics approach to interior fatigue crack growth in the very high cycle regime, Engineering Fracture Mechanics, vol.115, pp.241-254, 2014.

S. E. Stanzl-tschegg and B. Schönbauer, Near-threshold fatigue crack propagation and internal cracks in steel, Procedia Engineering, vol.2, p.1555, 2010.

H. Kitahara and R. Ueji, Crystallographic features of lath martensite in low carbon steel, Acta materialia, vol.54, pp.1279-1288, 2006.

B. M. Schönbauer and S. E. Stanzl-tschegg, Influence of environment on the fatigue crack growth behaviour of 12% Cr steel, Ultrasonics, vol.53, p.1405, 2013.

L. Jolu, T. Morgeneyer, T. Denquin, and A. , Gourgues-Lorenzon A-F. Fatigue lifetime and tearing resistance of AA2198 Al-Cu-Li alloy Friction Stir Welds: Effect of defects, International Journal of Fatigue, vol.70, pp.463-472, 2015.

P. J. Forsyth, A two stage process of fatigue crack growth, Crack Propagation: Proceedings of Cranfield Symposium, London: Her Majesty's Stationery Office, vol.76, p.94, 1962.

S. Suresh, Fatigue of Materials Second Edition, 1998.

J. Petit and C. Sarrazin-baudoux, Some critical aspects of low rate fatigue crack propagation in metallic materials, International Journal of Fatigue, vol.32, p.970, 2010.

F. Alexandre, , 2004.

M. Abikchi, T. Billot, J. Crepin, A. Longuet, C. Mary et al., Fatigue life and initiation mechanisms in wrought Inconel 718 DA for different microstructures, 13th International Conference on Fracture, vol.16, p.21, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00853448

R. Pippan, Threshold and effective threshold of fatigue crack propagation in ARMCO iron I: The influence of grain size and cold working, Materials Science and Engineering, vol.138, pp.1-13, 1991.

Y. Hong, X. Liu, Z. Lei, and C. Sun, The formation mechanism of characteristic region at crack initiation for very-high-cycle fatigue of high-strength steels, International Journal of Fatigue, vol.89, pp.108-118, 2016.

L. F. Van-swam and R. M. Pelloux, Fatigue Behavior of Maraging Steel 300, Metallurgical Transactions A, vol.6, pp.45-54, 1975.