Investigation of the thermophysical properties of binary system CO\textsubscript{2} and Hydro-fluoro-olefins

P.-A Artola, B. Rousseau, R Fauve, C. Houriez, E. El Ahmar, C Coquelet

To cite this version:

P.-A Artola, B. Rousseau, R Fauve, C. Houriez, E. El Ahmar, et al.. Investigation of the thermophysical properties of binary system CO\textsubscript{2} and Hydro-fluoro-olefins. ESAT 2017, May 2017, Bucarest, Romania. <hal-01633874>
Introduction

In the context of reduction of global greenhouse gas emissions, the development and study of refrigerants with low Global Warming Potential (GWP) is crucial. Fluorinated gases are currently considered as promising low-GWP refrigerants. These compounds are used as pure or as components of refrigerant blends. The knowledge of their thermophysical properties is of great importance in the design and optimization process of air-conditioning and refrigeration systems.

In the following, we illustrate how molecular simulations are used to predict several thermophysical properties for refrigerant mixtures. The studies are applied to the mixture CO$_2$+CHF$_3$CF$_2$ (R1234yf). Equilibrium properties, including liquid-vapour equilibrium, phase density, enthalpy of vaporization, enthalpy of mixing, specific heat, are obtained using Monte Carlo simulations. Transport properties (viscosity and thermal conductivity) are predicted by means of molecular simulation techniques.

Molecular Simulations

- **Systems studied**
 - Carbon dioxide
 - 2,3,3,3-tetrafluoropropene (R1234yf)
 - Force fields
 - CO$_2$: TraPPE model. All atom model, rigid molecule, multipole described with partial charges
 - R1234yf: Raabe model. All atom model, flexible molecule, multipole described with partial charges
 - Monte Carlo simulations
 - Gibbs code (CNRS-UP Sud/WPEN)1,4
 - ELV: Gibbs ensemble6 at constant pressure
 - Molecular Dynamics simulations
 - Newton code (CNRS-UP Sud)
 - Viscosity: equilibrium molecular dynamics and Green-Kubo relationship
 - Thermal conductivity: non equilibrium Heat Exchange Algorithm6

Conclusion

- Molecular simulation is able to predict several thermophysical properties for the CO$_2$-R1234yf mixture
- New numerical data have been produced for thermal conductivity. Predicted values show a reasonable agreement with ReProp data for pure components
- The full set of data can be used to compute quantities of interest for applications in cooling and heating devices such as the Prandtl number (η/λ)

References

Liquid-vapour equilibrium

- **ELV curve** at 283 K including experimental data2 PR78 correlation (with adjustable k)2
- Multipolar SAFT-Mie (courtesy P. Paricaud, ENSTA ParisTech, Univ. Paris Saclay)10
- and GIBBS predictions. Enthalpy of liquid and gas phases along the bubble and dew curves (right).
- Insert: enthalpy difference versus composition.

Specific Heat

- **Specific heat at constant pressure** $C_P(T) = C_P^0(T) + C_P^M(P, T)$
- C_P^M from fluctuations in NpT ensemble11
- $C_P^M (P, T) = \frac{1}{k_B T} \left(\left\langle U_N \right\rangle_T - \left\langle U_N \right\rangle_T \right) - N_R \beta$

Mixing enthalpy

- **Experimental data** obtained using a customized BT2-15 kilometer from Setaram, courtesy J.Y. Coxam (Univ. Blaise Pascal, Clermont-Ferrand)10
- **SAFT model**. Multipolar SAFT-Mie model, courtesy P. Paricaud (ENSTA ParisTech, Univ. Paris Saclay)10
- Monte Carlo simulations in the NpT ensemble

Transport properties

- **Experimental data** obtained using a customized BT2-15 kilometer from Setaram, courtesy J.Y. Coxam (Univ. Blaise Pascal, Clermont-Ferrand)10
- **SAFT model**. Multipolar SAFT-Mie model, courtesy P. Paricaud (ENSTA ParisTech, Univ. Paris Saclay)10
- Monte Carlo simulations in the NpT ensemble

References