Multiscale modeling of cemented tungsten carbide in hard rock drilling

Abstract : Mechanical behavior of rotary-percussive drilling tools made of tungsten carbide (WC) hardmetal in impact interaction with hard rock is investigated. This study presents a three-step multiscale simulation strategy, developed for evaluation of stress and strain heterogeneity within the hardmetal microstructure when subjected to loadings representative for drilling applications. Two homogenization approaches are used: a full-field finite-element model and a Beta-model (a nonlinear extension of the Kröner’s uniform field model). Both models combine isotropic Drucker–Prager elasto-plastic behavior of WC grains and isotropic von Mises elasto-plastic behavior of the binder, and include nonlinear hardening. First, a three-dimensional finite-element model of a representative volume element is constructed, which closely resembles the hardmetal microstructure. Full-field simulation with applied proportional loadings allows to determine the hardmetal effective elastic properties for different binder content, and an initial yield surface, resembling in shape a Drucker–Prager surface with a cap. These simulations are also used to calibrate the Beta-model, which, however, cannot predict the correct plastic behavior for the loadings with high hydrostatic component. Second, macroscopic finite-element simulations of normal and oblique frictional impact of an elastic rock by a hardmetal spherical tip are performed using a macroscopic set-up. The calibrated Beta-model is used at every Gauss-point of the hardmetal impactor. Finally, the most critical for the hardmetal’s integrity points are identified on the impactor’s surface, and complex non-proportional stress paths associated with these points are extracted. These stress paths are used as boundary conditions in a full-field simulations employing representative volume elements of hardmetal microstructure. Analysis of stress and plastic-strain fields at the microstructural scale suggests that the major source of wear of drilling inserts may come from tensile failure of WC grains.
Type de document :
Article dans une revue
International Journal of Solids and Structures, Elsevier, 2017, 128, pp.282-295. 〈10.1016/j.ijsolstr.2017.08.034〉
Liste complète des métadonnées
Contributeur : Odile Adam <>
Soumis le : lundi 13 novembre 2017 - 16:39:22
Dernière modification le : mardi 27 mars 2018 - 16:06:15




Dmitry Tkalich, Vladislav Yastrebov, Georges Cailletaud, Alexandre Kane. Multiscale modeling of cemented tungsten carbide in hard rock drilling. International Journal of Solids and Structures, Elsevier, 2017, 128, pp.282-295. 〈10.1016/j.ijsolstr.2017.08.034〉. 〈hal-01634073〉



Consultations de la notice