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Abstract

This paper studies the stochastic differential equation (SDE) associated to a two-level
quantum system (qubit) subject to Hamiltonian evolution as well as unmonitored and
monitored decoherence channels. The latter imply a stochastic evolution of the quantum
state (density operator), whose associated probability distribution we characterize. We
first show that for two sets of typical experimental settings, corresponding either to weak
quantum non demolition measurements or to weak fluorescence measurements, the three
Bloch coordinates of the qubit remain confined to a deterministically evolving surface or
curve inside the Bloch sphere. We explicitly solve the deterministic evolution, and we
provide a closed-form expression for the probability distribution on this surface or curve.
Then we relate the existence in general of such deterministically evolving submanifolds
to an accessibility question of control theory, which can be answered with an explicit
algebraic criterion on the SDE. This allows us to show that, for a qubit, the above two
sets of weak measurements are essentially the only ones featuring deterministic surfaces
or curves.

1 Introduction

The quantum master stochastic differential equation is a general continuous-time model for
Markovian evolution of the density operator ρ (“the state”) of an open quantum system
[1, 2]. Open refers to interactions with an unmonitored environment, and with measurement
devices which provide continuous-time information about the quantum state. For a target
system with Hilbert space H, the effects of these interactions are characterized by operators
Lk on H, sometimes called “Lindblad operators”. Denoting

FL(ρ) = LρL† − 1
2L

†Lρ− 1
2ρL

†L (1)

GL(ρ) = Lρ+ ρL† − trace(Lρ+ ρL†) ρ ,
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†Centre Automatique et Systèmes, Mines-ParisTech, PSL Research University. 60 Bd Saint-Michel, 75006
Paris, France.

1

http://arxiv.org/abs/1603.05402v2


the master equation reads

dρt = −i[H, ρt] dt +

m
∑

k=1

FLk
(ρt) dt +

m
∑

k=1

GLk
(ρt)

√
ηk dW

k
t ; (2)

dykt =
√
ηk trace(Lρ+ ρL†) dt + dW k

t , for k = 1, 2, ...,m. (3)

This is a stochastic differential equation driven by independent Wiener processes dW k
t to be

understood in the Itô sense. The second equation describes the measurement outputs yk as-
sociated to a particular stochastic realization of the continuous weak measurement process on
m channels, and the first equation describes the associated stochastic evolution of the density
operator ρ describing the quantum state, consistent with the associated measurement output
— therefore the same noise drives both equations. In the first equation, the first term repre-
sents Hamiltonian evolution, with H hermitian. The ηk represent measurement efficiencies.
If all ηk = 1, then the interaction takes place with perfectly monitored measurement devices,
which lose no information about the current quantum state, and an initially pure sate (ρ of
rank 1) remains pure. The associated noise processes dW k

t model measurement back-action:
when a quantum system is measured, its state moves closer to the stochastic result of the
measurement. Completely unmonitored channels, hence often said to model interactions with
“the environment”, would correspond to ηk = 0. For such channels, ρ can only represent the
expectation of the evolution: there is no associated measurement back-action (GLk

term),
but still a deterministic “relaxation” or “decoherence” (FLk

term).

Our goal is to find analytic expressions for the probability distribution of ρt, for all t > 0,
evolving from a known initial state ρ0, when the system follows (2). This is to be under-
stood as an “a priori” probability distribution, i.e. without/before knowing the sequence of
measurement results actually obtained, or equivalently without knowing the values actually
taken by the noise processes dW k

t . The standard treatment in this case is to give the expected
evolution of ρt, which is the deterministic Lindblad equation obtained with all ηk = 0. This
indeed describes all we can ever experimentally access if the dW k

t are unknown forever. How-
ever, if we know that in an experimental run we will have access to the dykt thus the dW k

t , and
we can condition some actions on these actual dykt as one would wish to do towards feedback
control, then knowing not only the expectation but the full distribution of future ρt becomes
relevant (e.g. for feedback system design).

The present paper is motivated by recent experimental findings [3, 10, 6] on an imper-
fectly monitored qubit system. The qubit (quantum bit) is the smallest quantum system,
with two-dimensional Hilbert space H = C

2. It has drawn a lot of attention as an illustrative
benchmark of quantum control and as the basic building block for quantum information tech-
nologies [11]. The experimental results of [3] have prompted us to look at (2) as a stochastic
differential equation with everywhere singular diffusion. It is clear that such singular diffu-
sion can lead to singular distributions, with lower-dimensional support — but only for specific
combinations of singular diffusion and drift. It turns out that these specific combinations hold
precisely for typical quantum experiments like the one in [3]. Note that the lower-dimensional
support manifold is in general not constant, but instead it evolves deterministically in time.
This somewhat differs from the dynamical invariants [8], which require the expectation of
a linear operator to be invariant. Here instead, we require a nonlinear and possibly time-
dependent submanifold of H to be determined independently of the individual realizations
(with probability 1). Our first set of results, see Section 3.1 and Section 4.1, analytically
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characterize the equation describing the support manifolds and their deterministic evolution
in time, for typical experiments of monitored qubit systems: homodyne and heterodyne mea-
surement with a hermitian (“quantum non demolition measurement”) or with a nilpotent
(“fluorescence measurement”) operator Lk. Furthermore, in Section 3.2 and Section 4.2, we
write the Fokker-Planck Partial Differential Equation (PDE) governing the evolution of the
probability distribution of ρt on this manifold, and we provide its closed-form solution. This
provides a precise description of model predictions for those two particular cases, which in
fact has been confronted and confirmed with experimental data in [3].

The next natural question is how general this confinement to a deterministic manifold
might be for quantum systems. To answer this question, we have resorted to a control-
theoretic approach which is recalled in the Appendix and might be of independent interest;
indeed, we have found this method applied to a quantum system only in very reduced form
in [15]. The method considers the independent noise terms as independent inputs and inves-
tigates the support of the distribution through strong accessibility of the associated control
system. The latter can be settled with a Lie algebraic criterion, i.e. a few explicit computa-
tions determine the dimension of the support of the system at any given time, without having
to actually identify the equation of the manifold. We here develop its specific adaptation to
a general quantum master equation of type (2), and we apply it in Section 5 to establish that
for a qubit system, the cases of Section 3 and Section 4 are essentially the only ones where
the qubit distribution remains supported on a submanifold. This points towards a small class
of quantum systems which might be of particular interest for quantum control purposes.

While the present paper is devoted to a comprehensive treatment of two-level systems,
we would like to mention that the algebraic characterization of submanifolds applies quite
efficiently to higher-dimensional Hilbert spaces; a paper treating physically relevant examples
is in preparation.

2 The continuously monitored qubit

The qubit has a two-dimensional Hilbert space H = C
2, which is usually identified with the

span of two orthonormal vectors |g〉, |e〉 ∈ H. The state of an open qubit system is then
represented by the density operator ρ which is a hermitian, positive semidefinite 2×2 matrix
of trace 1. We will use the Pauli operators σx = |e〉〈g| + |g〉〈e|, σy = i(|g〉〈e| − |e〉〈g|),
σz = |e〉〈e| − |g〉〈g|. An alternative representation of the qubit state uses the so-called Bloch

sphere coordinates x, y, z such that ρ =
I+xσx+yσy+zσz

2 . The set of density matrices then
corresponds to all x, y, z for which x2 + y2 + z2 ≤ 1, also known as the Bloch sphere.

In the next two sections, we analyze in detail the evolution of the distribution of ρ for a
qubit model, in the four following typical experimental settings.

In homodyne detection [Ho], (2) features a single monitored coherence channel L1 while
in heterodyne detection [He] it features two channels L1 and L2 = i L1. Physically, this cor-
responds respectively to measuring one or the two quadratures of a field that has interacted
with the qubit. Concerning the L1 operator, we focus on two experimentally implemented
schemes. One applies L1 a hermitian operator [H], denoted L1 = σz, which physically cor-
responds to a quantum non demolition measurement; this is the most common type, see
e.g. [10, 6]. Another one applies L1 nilpotent [N], denoted L1 = σ− = |g〉〈e| with little loss
of generality, which physically corresponds to a fluorescence measurement; see e.g. [14] for
a description of the homodyne case, with feedback, and [3] for an experiment involving the
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heterodyne case. This yields four cases to consider:

[HeH] dρt = 2Fσz (ρt) dt +Gσz (ρt)
√
η dW 1

t +Giσz (ρt)
√
η dW 2

t (4)

[HeN ] dρt = 2Fσ−
(ρt) dt +Gσ−

(ρt)
√
η dW 1

t +Giσ−
(ρt)

√
η dW 2

t (5)

[HoH] dρt = Fσz (ρt) dt +Gσz(ρt)
√
η dW 1

t (6)

[HoN ] dρt = Fσ−
(ρt) dt +Gσ−

(ρt)
√
η dW 1

t (7)

Remarkably, for each of these four typical cases, the stochastic evolution of the qubit is
in fact confined to a deterministically evolving submanifold of the state space, as we show
next. We start with the heterodyne cases, where the qubit stays on a deterministically moving
surface. In the homodyne cases, the qubit stays on a deterministically evolving curve. This
dimensional reduction in uncertainty also allows us to provide a closed-form expression for
the probability distribution at any time of the qubit governed by one of (4)-(7).

3 Heterodyne measurement

In Bloch sphere coordinates, both dynamics (4) and (5) are invariant under rotation around
the associated z axis. Physically this just expresses that when measuring both quadratures,
the reference phase for distinguishing the individual quadratures can be chosen arbitrarily. We
therefore rewrite the equations in cylindrical coordinates (r, θ, z) where x = r cos θ, y = r sin θ.
Note that since this is a nonlinear coordinate change it requires to carefully apply Itô calculus1.
We get respectively:

[HeH] drt = −(4− 2η) rt dt− 2rtzt
√
ηdW z

t (8)

dzt = 2(1 − z2t )
√
ηdW z

t

dθt = 2
√
ηdW θ

t

[HeN ] drt =

(

η(1 + zt)
2

2rt
− rt

)

dt+
√
η(1 + zt − r2t ) dW

z
t (9)

dzt = −2(1 + zt) dt−
√
ηrt(1 + zt) dW

z
t

dθt =
√
η
1 + zt
rt

dW θ
t ,

where dW r
t and dW θ

t are two independent Wiener processes, equivalent to dW 1
t and dW 2

t via
a unitary change of frame.

3.1 Deterministic surfaces

We have the following results:

Theorem 1:

(a) The qubit governed by the SDE (8) remains at all times confined to the submanifold

[HeH] r2 − bt (1− z2) = 0 , where bt = b0 e
−8(1−η)t ∈ [0, 1] . (10)

1 We only need the following Itô rule. Let X a vector of components (X)j and evolving according to
(dXt)j = Fj(Xt)dt +

∑
k Gj,k(Xt) dW

k
t , with normalized independent Wiener processes dW k

t . Consider the
change of coordinates (X ′)j = Hj(X). Then we have

(dX ′
t)j =

∑
l

∂Hj

∂Xl
Fldt+

∑
l,k

∂Hj

∂Xl
Gl,k dW

k + 1
2

∑
l,m,k

∂2Hj

∂Xl∂Xm
Gl,k Gm,k dt .

The last term is the Itô correction term, with respect to standard (i.e. non-stochastic) calculus.
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(b) The qubit governed by the SDE (9) remains at all times confined to the submanifold

[HeN ]
r2

2
+ ct(1+z)2 − (1+z) = 0 , where ct = (c0 − η

2 ) e
2t + η

2 ∈ [12 ,+∞) . (11)

In other words, the variables b = r2

1−z2 and c = 1+z−r2/2
(1+z)2 are deterministic components

of the respective dynamics. The cut of the mentioned surfaces with the plane cos θ = 0 are
shown on Fig. 1. Theorem 1 can be checked simply by writing the dynamics of bt and ct
respectively using (8), (9) and applying the rules of Itô calculus. This yields a deterministic
and perfectly autonomous evolution equation, e.g. dct = 2(ct − η

2 ) dt . It might be more
informative to explain how we have found the appropriate variables. Inspired by experimental
results [3] for (9), we have considered the surfaces defined by r2

2 + fc(z) = 0 where fc is a
function to be found, and c ∈ R parametrizes the surfaces. As a first condition, we impose
that the purely stochastic part of the motion is tangent to the surface. This requires

r(z + 1− r2)− dfc
dz

r(1 + z) = 0 = r

(

(z + 1) + 2fc(z)− (1 + z)
dfc
dz

)

.

The general solution of this equation is fc(z) = c(1 + z)2 − (1 + z), as appearing in (11). We
have then checked that the associated variable ct follows an autonomous ordinary differential
equation, i.e. dct can be expressed as a function of ct only.
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Figure 1: Left: Invariant manifolds for σz measurement. I.e. curves resulting from the
intersection of the plane x = 0 with the surface described by r2 − bt (1 − z2) = 0, for
bt ∈ {1, 0.8, 0.6, 0.4, 0.2, 0.1, 0} respectively from outer to inner ellipse; the outermost ellipse
(bt = 1) is the unit circle. Right: Invariant manifolds for σ− measurement. I.e. curves resulting

from the intersection of the plane y = 0 with the surface described by r2

2 +ct(1+z)2−(1+z) =
0, for ct ∈ {0.5, 0.6, 0.7, 1, 2, 10} respectively, from outer to inner ellipse; the outermost ellipse
(ct = 0.5) is the unit circle.

Let us briefly discuss the interpretation of these results.

• For the σ− measurement, ct can only increase. For ct = 1/2 the surface coincides with
the unit sphere and as ct increases the surface shrinks inwards and collapses towards
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z = −1 as c → +∞. This reflects that when monitoring a qubit via the energy loss
channel σ−, the trajectories always eventually converge towards the ground state. The
only exception to this is when c(0) − η/2 = 0, in which case c(t) = c(0) for all t. Since
c(0) ≥ 1/2 and η ≤ 1, this only happens for η = 1 and starting on the surface of
the Bloch sphere, in which case we know from information-theoretic arguments that
the quantum state remains pure. In this case, from physical arguments the state will
still eventually converge to the ground state, but it will do so while remaining on
the unit Bloch sphere; in this particular case, the convergence to the ground state
is solely characterized by the evolution of state distribution induced by the SDE on
this invariant manifold, which is the subject of the next section. Interestingly, for
η = 1 but non-pure initial state i.e. x20 + y20 + z20 < 1, c(t) further decreases. For
η = 0.24, the predicted evolution matches well with experimental results [3]. Note
that the deterministic shrinking of the surface on which the trajectories lie does not
preclude that the stochastic evolution drives a state from the side towards the summit
of the surface, hence temporarily increasing its expectation of energy, as has indeed
been observed in [3].

• For the σz measurement, the surfaces are ellipsoids whose long axis coincides with the
polar axis and whose short axes, of equal length bt, give the radial extension; thus
bt = 1 characterizes the unit sphere and bt = 0 the polar axis. As expected, bt decreases
exponentially unless η = 1, in which case bt remains constant. Thus unlike for σ−, with
σz even if we do not start on the unit sphere, for η = 1 we stay on the same surface for
all times.

We conclude by mentioning the points z = ±1 for σz (resp. z = −1 for σ−) which do not
belong to a unique manifold b0 (resp. c0). At these points the coefficients of the noise vanishes
and the noiseless dynamics as well, which means that any initial state on these points will
remain exactly there forever.

3.2 Distribution on the surfaces

In the following we give expressions for the probability distribution of ρt at any time t, when
the system starts from a known initial condition (i.e. a Dirac distribution at some point
in the Bloch sphere) and follows (8) or (9). In the previous section we have shown that
the distribution is then supported on a deterministically evolving submanifold of the Bloch
sphere, and the following thus handles the remaining degrees of freedom on that submanifold.

For a more general initial state distribution, the expression of the probability distribution
at any time t > 0 is obtained simply by convolution of the results below with the distribution
of initial states.

We recall the following link between SDE and probability distribution, for component
(X)ℓ of a stochastic process in X ∈ R

n evolving subject to independent Wiener processes
dW k

t :

(dXt)ℓ = Fℓ(Xt)dt+
∑

k

Gℓ,k(Xt) dW
k
t (Itô) (12)

⇒ ∂
∂tPX(x, t) = −

∑

ℓ

∂

∂xℓ
(Fℓ(x)PX(x, t)) + 1

2

∑

j,ℓ

∂2

∂xj∂xℓ
(
∑

k Gj,k(x)Gℓ,k(x)PX(x, t)) .
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This rule allows us to write the Fokker-Planck equation in convenient coordinates, and in
fact provide a closed-form solution PX(x, t) for all the cases considered in this paper. For
heterodyne measurement, having confined the system to a deterministic submanifold, we have
essentially to characterize a distribution with x = (z, θ).

Case of σ−: This is in fact the most difficult case, as the evolution of θ depends on zt.
However nothing in the SDE depends on θ and this allows us to solve the system sequentially.

It turns out that a particularly simple expression is obtained by describing the position
on the submanifolds with the variables (φ, θ) instead of (z, θ), where

φ =
2

η

(

1

z + 1
− c

)

=
r2

η(1 + z)2
. (13)

Geometrically, φ is (η times the square of) the tangent of the angle between the z axis and
the vector joining the point z = −1 to the state, see Figure 2. So φ characterizes the central
projection of a state of the Bloch sphere, from the center z = −1 onto the plane at e.g. z = +1.
A state on the unit sphere close to z = −1 corresponds to φ close to +∞, while a state close to
z = +1 corresponds to φ close to 0. Applying the Itô rule and re-expressing the longitudinal
diffusion, we obtain

dφt =
√

φt2 dW
z
t + 2

(

1 + φt +
ηφt

ct + ηφt/2

)

dt ,

dθt = 1/
√

φ dW θ
t .

We next decompose the joint probability distribution PX(φ, θ, t) along the Fourier modes
in θ:

[HeN ] PX(φ, θ, t) =

+∞
∑

k=0

Ak(φ, t) cos(kθ) ,

where we have only kept the cosines thanks to symmetry, assuming without loss of generality
a solution starting at a known point with θ = 0. Our goal is now to get an expression for
the functions Ak(φ, t). We thus use the formula (12) to get the Fokker-Planck-like equation
on PX(φ, θ, t) and then decompose it to obtain an equation for each Ak(φ, t). The latter do

not look too nice, but with the time-dependent change of variables Fk(φ, t) =
Ak(φ,t)
ηφ+2ct

φ−k/2 we
get:

1

2

∂Fk

∂t
= φ

∂2Fk

∂φ2
+ (1 + k − φ)

∂Fk

∂φ
− (2 + k/2)Fk . (14)

Towards interpretation, we note that in particular for k = 0 we have A0 = Pφ the marginal
probability distribution in φ, and the F0 behaves like Pφ for small φ and like Pφ/φ for large
φ.

Following the standard procedure which expands the solution as a linear combination
of time-exponential terms: Fk(φ, t/2) =

∫

s Fk,s(φ) exp(−st) ds , the functions Fk,s(φ) are
solutions of an ordinary differential equation of Kummer type

φ
∂2Fk,s

∂φ2
+ (b− φ)

∂Fk,s

∂φ
− aFk,s = 0 , (15)
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with parameters b = 1 + k and a = 2 + k/2 − s. These Kummer type equations have a
general solution in terms of regular and singular confluent hypergeometric functions. For
(2 + k/2− s) = a = −n a negative integer, the confluent hypergeometric functions reduce to

the generalized Laguerre polynomials L
(α)
n (φ) with α = b−1 = k. The latter form a complete

orthonormal basis in the sense
∫ +∞

0
L(α)
n (φ)L(α)

m (φ)
n!

Γ(n+ 1 + α)
φα e−φdφ =

{

1 if n = m
0 if n 6= m

,

where Γ is the gamma function that satisfies Γ(n+ 1) = n! for n ≥ 0 integer.
This allows to expand an initial condition concentrated at φ = φ0, θ = 0 into

Fk,s(φ) ∝
+∞
∑

n=0

akn Ln(φ) with akn = L(k)
n (φ0)φ

k/2
0

n!

Γ(n+ 1 + α)
.

After computing back the change of variables, the evolution of the associated probability
distribution is then characterized by:

[HeN ] Ak(t/2, φ) = (φ e−t)k/2
2c0 − η + η(φ+ 1)e−t

N

+∞
∑

n=0

(akne
−(n+1) t)L(k)

n (φ) ,

where N is a normalization constant. The series is well-behaved as soon as t > 0, since for

fixed φ the L
(k)
n (φ) (and thus their product with the an) are bounded uniformly in n. For large

t, the term with n = 0 becomes dominant, hence we converge towards a uniform distribution
in φ, which implies that in terms of latitude on the Bloch sphere, the state concentrates more
and more towards the point z = −1 (see Figure 2). Also k = 0 becomes dominant for large
t, reflecting that the θ variable gets uniformly distributed as well.

In some cases the above series can be worked out more explicitly. For instance we can
compute the marginal distribution PZ(z, t) when starting at z = +1, which means φ0 = 0 and

c0 = 1/2. We then have a0n = 1 for all n and using the property
∑+∞

n=0 d
n+1L

(0)
n (x) = d

1−d e
−d
1−d

x

we get Pφ(φ, t/2) = (1 − η + η(φ + 1)e−t) dt e
−dtφ with dt =

1
et−1 . For η = 1, in terms

of latitude λ on the Bloch sphere where z = sin(λ), this corresponds to the distribution
represented on the right of Fig.2:

Pλ(t/2, λ) =
4 cos(λ)

(1 + sin(λ))3
e−t dt e

−dt (1−sin(λ))/(1+sin(λ)) with dt =
1

et − 1
. (16)

Case of σz: For the hermitian measurement operator, the dynamics on the surface is de-
scribed by two decoupled purely diffusive evolutions, for the z and θ coordinates:

dθt = 2
√
ηdW θ

t

dzt = 2
√
η (1− z2t ) dW

z
t .

Thus for an experiment starting at any known initial state on the Bloch sphere, at any time
the associated probability distribution is the product of the marginal distribution PZ in z and
the marginal distribution Pθ in θ.

8



−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

z = −1

(x, y, z)

α

φ = tan2(α)/η

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
0

1

2

3

4

5

6

λ (in units of π)

P
(t

/2
)

λ

 

 
t=0.02
t=0.1
t=0.2
t=0.4
t=1.2
t=2
t=4

Figure 2: Left: Geometric interpretation of the variable φ introduced in (13). Right: A few
snapshots of the probability distribution of type (16), i.e. distribution of Bloch sphere latitude
λ when starting at z = +1 with heterodyne measurement of σ− and η = 1.

Regarding θ, we have a canonical Brownian motion on the circle. The solution can be
expanded in the Fourier basis as

Pθ(t, θ) =

+∞
∑

k=−∞
ak(t) e

ikθ with ak(t) = e−2k2ηt ak(0) .

In principle any initial distribution Pθ(0, θ) can be expanded on the Fourier basis functions;
the Dirac distribution, corresponding to a known starting position, gives ak(0) = 1/(2π) for
all k. As soon as t > 0 the series converges fine and for large t, Pθ(t, θ) converges towards
the uniform distribution. Alternatively, one can write the Gaussian solution for a Brownian
motion on the line and wrap it around the circle to get the fast converging series:

[HeH] Pθ(t/4, θ) =
1√
2πηt

∑

k∈Z
e−(θ−θ0+2πk)2/2ηt .

To solve the diffusive SDE in z, we use the change of variables w = asinh( z√
1−z2

) , such

that w is close to the tangent of the latitude on the Bloch sphere tanλ = z√
1−z2

. This maps

the interval z ∈ [−1, 1] onto w ∈ [−∞,+∞] and we have the Fokker-Planck equation:

∂Pw

∂t
= 2η

∂2Pw

∂w2
− 4η

∂

∂w
(tanh(w)Pw) .

Defining Pw(t/4, w) = cosh(w)Qw(t, w)e
−η t/2 we get

∂Qw

∂t
=

η

2

∂2Qw

∂w2
.

This is the Fokker-Planck equation of a canonical Brownian motion, whose Gaussian solution
starting at w = w0 writes

Qw(t, w) =
1√
2πηt

e−(w−w0)2/2ηt .
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Figure 3: Left: A few probability distributions of type (17) for the heterodyne measurement of
σz, converted into probability distributions on the Bloch sphere latitude λ = asin(z) for η = 1.
The system starts slightly above the Bloch sphere equator, at λ0 = 0.2. Right: Evolution in
time of the weight of probability in the southern hemisphere of the Bloch sphere, for the same
data as the left plot. The horizontal line depicts the fraction of detections z = −1 expected
in a projective measurement of σz.

Converting back to Pw, the whole expression simplifies considerably and we are just left with
two Gaussians with opposite drifts:

[HeH] Pw(t/4, w) =
1

2cosh(w0)
√
2πηt

(

ew0 e
−(w−w0−ηt)2

2ηt + e−w0 e
−(w−w0+ηt)2

2ηt

)

. (17)

This expresses exactly how the distribution converges towards the steady states z = +1 and
z = −1, which would be the possible results for a projective measurement of σz. The two
Gaussians indeed separate, since their drift is in t while their standard deviation grows in√
t. Moreover, one checks that ew0

e−w0
= 1+z0

1−z0
, i.e. the relative weight between the Gaussians

matches the relative probabilities of detecting +1 or −1 in a projective measurement of σz.
See figure 3 for illustration.

4 Homodyne measurement

For the σz measurement, the symmetry around the z axis of the Bloch sphere remains.
Translating (6) into cylindrical coordinates we get

[HoH] dr = −2r dt− 2rz
√
η dWz (18)

dz = 2(1 − z2)
√
η dWz

dθ = 0 .

For the homodyne σ− measurement, the symmetry is broken since the noise part is reduced
to a σ− + (σ−)

† = σx operator, without the same on i σ− + (iσ−)
† = σy. Hence it is easier to
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keep the Cartesian Bloch sphere coordinates,

[HoN ] dx = −x/2 dt+
√
η((1 + z)− x2) dWt (19)

dy = −y/2 dt+
√
η(−xy) dWt

dz = −(1 + z) dt+
√
η(−x(1 + z)) dWt .

4.1 Deterministic curves

We have the following deterministically evolving components.

Theorem 2:

(a) The qubit governed by the SDE (18) remains at all times confined to the curve defined by

[HoH] θt = θ0 and r2 − bt (1− z2) = 0 , where bt = b0 e
−4(1−η)t ∈ [0, 1] . (20)

(b) The qubit governed by the SDE (19) remains at all times confined to the curve defined
by the intersection of

[HoN ]
x2

2
+ ct(1+z)2 − (1+z) = 0 where ct = (c0 −

η

2
) et +

η

2
∈ [1/2,+∞)(21)

and y − ft(1+z) = 0 where ft = f0 e
t/2 ∈ [0,+∞) . (22)

Like for the heterodyne measurement, this can be checked just by writing the dynamics
of the proposed coordinates and checking that (i) they are influenced by no noise components
directly and (ii) they obey an autonomous differential equation. The presence of a single
noise component is a necessary condition for having the distribution of states supported, at
any time, on a curve in the Bloch sphere; however as we will see in Section 5 this is not
sufficient in general, due to condition (ii). The existence of deterministic curves is thus due
to our particular choice of L1 operators.

Regarding the geometry of the support curves:

• For σz we have a straightforward variation of the heterodyne case, i.e. the support is
the curves represented on Fig. 1(left) and contained in the plane θ = θ0. Note that in
the heterodyne case, σz and iσz were both giving the same drift, and as we are now left
with only one of those channels, the evolution of bt – i.e. the contraction orthogonal to
the direction associated to the measurement output – is two times slower. In contrast,
the z variable is precisely the measurement output associated to σz, while iσz was
anyways giving pure noise as measurement output: therefore it is not surprising that
the evolution of zt in (18) keeps the same speed as in the heterodyne case.

• For σ−, the equation associated to ct describes the same shape as for the heterodyne
case, associated to the curves represented on Fig. 1 in the plane x = 0. However, while
for the heterodyne case the surface is generated by rotation of such curve around the z
axis, for the present homodyne case it is obtained by translating the curve along the x
axis. At each time, the deterministic curve is the intersection of this surface with the
surface associated to ft, and which corresponds to a plane parallel to the x axis and
through the point z = −1. As ft increases in time, those planes move from vertical
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towards horizontal. Note that the ft evolution is independent of η and features two
static surfaces: a stable one at ft = +∞, whose intersection with the Bloch sphere is
the single state z = −1; and an unstable one at ft = 0, corresponding to the plane
y = 0 which includes both z = −1 and z = +1. The intersection of the time-dependent
surfaces associated to ct and to ft gives a curve with z maximum in the plane x = 0,
and getting more and more horizontal.

This is consistent with an information-theoretic interpretation: only variations in the x
direction, through the associated information gain, might imply that energy increases
over some parts of the trajectory, while transversely to the x direction (variable ft) the
energy decreases deterministically.

The points z = ±1 for σz (resp. z = −1 for σ−) are still the only points which do not
correspond to unique values of b0 (resp.c0, f0); and they are still equilibrium points, where
the coefficient of the noise vanishes and the state will stay forever.

4.2 Distribution on the curves

Case of σz: The remaining stochastic differential equation is like for the heterodyne case,

dzt = 2
√
η (1− z2t ) dW

z
t .

The same change of coordinates and solution are thus valid: with w = asinh( z√
1−z2

) ,

[HoH] Pw(t/4, w) =
1

2cosh(w0)
√
2πηt

(

ew0 e
−(w−w0−ηt)2

2ηt + e−w0 e
−(w−w0+ηt)2

2ηt

)

.

Case of σ−: Unlike the manifolds, the probability distribution is similar to the heterodyne
setting, just without the variable θ. Since the marginal distribution on z now contains all
the information, in fact we follow the steps of the corresponding heterodyne case without the
θ-dependent expansion, taking directly k = 0.

We start from the stochastic differential equation

dzt = −(1+zt) dt−
√

2η
√

(1+zt)− ct(1+zt)2 (1+zt) dWt

which is obtained by replacing xt according to Theorem 2(b). This is the similar replacement
as for rt in the heterodyne case, so we try a similar change of variables:

χ = x2

2η (1+z)2
=

(

1
1+z − ct

)

1
η .

This yields

dχt =
√
2
√
χt dWt +

(

χt +
1

2
+

2ηχt

ct + ηχt

)

dt

and defining again Fχ = Pχ/(ct + ηχ) we get

∂Fχ

∂t
= χ

∂2Fχ

∂χ2
+ (3/2 − χ)

∂Fχ

∂χ
− 2Fχ .
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Pursuing the same approach again leads to a Kummer type differential equation (15) with
now a = 2 − s and b = 3/2. For a = −n a negative integer, the solutions of this equation

include the generalized Laguerre polynomials L
(α)
n (χ) with α = 1/2.

Thus an initial condition concentrated at χ = χ0 can be expanded as

Fs(χ) ∝
+∞
∑

n=0

an L
(α)
n (χ) with an = L(α)

n (χ0)
n!

Γ(n+ 3/2)

and the associated probability evolves as

[HoN ] Pχ(t, χ) =
c0−η/2+η(χ+1/2)e−t

N

+∞
∑

n=0

(ane
−(n+1) t)L(α)

n (χ) ,

with N a normalization constant.

5 When is a qubit confined to a deterministic surface or curve?

The fact that the SDEs (4) to (7) feature deterministically evolving submanifolds has appeared
as a surprise to us. It is certainly not implied directly by the fact that they are governed
by less than 3 noise channels. Indeed, even if there is a single noise term, its combination
with deterministic drift can spread out the state of an SDE into several dimensions. This is
essentially the same principle of nonholonomic motion that allows a car to park sidewards:
by concatenating different steps associated to different values of a single degree of freedom in
the vector field (the steering angle), one can reach all positions and orientations in the plane.
Thus for a generically selected SDE, one would rather expect that associated nonholonomic
constraints cannot be integrated, and diffusion indeed takes place in all directions.

Given the observations on (4) to (7), a natural question is whether the confinement to
submanifolds is a particularity of the chosen Lindblad operators, or maybe a more general
property of quantum dynamics. It turns out that it is the former, as we next show for the
qubit. Towards better readability, we only summarize the results in this section. Their proof
is based on tools from control theory, leading to an algebraic criterion to analyze directly
from a vector field in how many dimensions a system can spread. This theory is recalled in
the Appendix, which also discusses its specific adaptation to quantum systems.

This general theory allows in just a few systematic minutes to retrieve the existence of
the deterministic submanifolds of Sections 3 and 4, without constructing their explicit form.
For general choices of measurement operators Lk, we will first consider the case when all the
channels are monitored. We then illustrate a few relevant cases with unmonitored channels.
Our general assumptions are:

(i) We can start from any point inside the Bloch sphere, i.e. we do not consider cases
implied by special initial conditions (like a pure state).

(ii) The relative strengths of the different Lindblad operators are not precisely tuned, i.e. we
do not consider cases where the drift implied by one operator would precisely cancel an
effect of another operator.

(iii) Similarly, the values of the ηj are not precisely tuned towards cross-cancelations, except
for the case η = 1 which we sometimes treat independently.
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5.1 One-dimensional submanifolds

Proposition 3: Consider a qubit subject to a single arbitrary Lindblad operator L. The state
remains confined to a deterministic time-varying curve in the Bloch sphere if and only if

[L,L†]L = rL+ cI for some r ∈ R and c ∈ C.

This condition holds iff L = c1 σ− or L = c1σz + c2I in some orthonormal Hilbert
basis and for some c1, c2 ∈ C.

Proof: According to the theory in Appendix, staying on a curve imposes on the Lie algebras
generated by the vector fields, that GF = G = span(GL1). Obviously, in presence of any
unique arbitrary operator L, we have G = span(GL) since [L, L] = 0. Incorporating the drift
term towards GF imposes that the vector field generated by [L,L†]L must be collinear with
the vector field generated by L.

A general operator L can be written as L = ασz + βiσx + γiσz + cI for α, β, γ ∈ R and
c ∈ C, without loss of generality modulo a unitary change of basis. We then get

[L†, L]L = [2ασz , L]L = −4αβ σy L .

Writing it out, we see that having this last expression collinear with L requires either β = 0,
or α = 0, or L = α(σz ± iσx). The latter case is essentially L = c1 σ−; indeed recall that
σ− ∝ (σx + iσy) and that eiφσ− = U σ−U

† with U = diag(eiφ, 1) a unitary change of basis.
The other cases are, up to basis change, of the form L = c1σz + c2I. �

The cases of Section 4 are readily checked. For L = σ− we have [σ+, σ−]σ− = −σ−.
For L = σz we get [σz, σz]σz = 0. The latter is recovered as the second case in Proposition 4,
with c2 = 0 and c1 real. For c1 imaginary we get a Hamiltonian rotation, at stochastic speed,
around the z axis. For general complex c1, the system moves on the surface described by (20)
and undergoes a stochastic rotation proportional to its latitude change, hence remaining on
an inclined curve inscribed in that surface.

Ex.1.a: Interestingly, the above shows that e.g. for L = σz + σ−, the system would not
remain confined to a curve, even though we have a single noise channel. One checks indeed
that

[L†, L]L = −L− 2iσy =: −L+ 2L′ . (23)

5.1.1 Several Lindblad operators

With the restrictions imposed by Prop.3, it is not difficult to see that staying on a deterministic
time-varying curve in presence of several Lindblad operators requires very special conditions.

Proposition 4: Consider a qubit subject to Lindblad operators Lj , j = 1, 2, .... The state
remains confined to a deterministic time-varying curve in the Bloch sphere if and only if

Lj = c0σz + cjI for all j in some basis and for some c0, cj ∈ C.

Proof: We again use the algebraic criteria from the appendix. To keep the Lie algebra G

one-dimensional, we already need Lj = L1 + cj I with some cj ∈ C. Combining this with the
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still necessary requirements for a single L1, we see that the case L1 = σx + iσy drops out
(unless Lj = L1 for all j which is not really “several” operators). For the only remaining case,
the properties (34) and GL+αI = GL ensure that indeed, the system would remain confined
to a deterministic curve. �

5.2 Two-dimensional submanifolds

Let us first clarify when a single monitored channel L can confine the system to a two-
dimensional submanifold of the Bloch sphere.

Proposition 5: Consider a quantum master SDE (2) on a qubit with H = 0 and a single,
monitored operator L.

• If η < 1 , then the system starting at a generic ρ(0) will diffuse in all 3 dimensions

of the Bloch sphere, except for the cases in Prop.3 , where it stays on a deterministic
curve.

• If η = 1 and either L = σx + iβσy + r I in some basis, with any β, r ∈ R, or

L = σx + i
√
1 + r2σy + r iI in some basis, with any r ∈ R, then the system starting

at any ρ(0) remains confined to a 2-dimensional deterministically evolving submanifold.
Else, even for η = 1, except for the cases in Prop.3 the system starting at a generic ρ(0)
diffuses in all 3 dimensions of the Bloch sphere.

Proof: Again we write a generic L and examine the algebraic conditions in the appendix.
Throughout the proof we exclude the cases already covered in Section 5.1. Note that for
η < 1, as we assume that η is not precisely tuned, both the part in η and the part in (1−η) of
the drift (31) must be considered independently towards building GF . In particular the vector
fields associated to the following commutators belong to GF as constructed with Prop.B.6:

L = ασx + βiσy + γiσx+ cI

[L†, L]L =: L′ ∝ βσx − γσy + cσz + αiσy

[L, L′] ∝ −βcσx + γcσy + (β2 + γ2 − α2)σz − αciσy − 2αγiσz .

Their linear dependence is examined with Proposition B.5. Note that c can be complex, so
terms must be slightly regrouped. Satisfying the first option of Prop.B.5 requires Im(c) = 0,
then γ = 0 and (β2 − α2 + |c|2) = 0. The second option of Prop.B.5 gives no new solution.
The third option is the most general and allows to have just γ = Im(c) = 0 or γ = Re(c) = 0.
It then remains to check the Lie bracket between GL′ and FL +DL.
- For η = 1, this reduces to investigating the commutator Q2 =

[

L′ , (L† + L)L
]

. For c real
we get

Q2 ∈ span(σx, σz, iσy) .

Such operator obviously satisfies the third item of Prop.2.A together with L and L′. Hence
GQ2 can be expressed as a linear combination ofGL′ andGL, so the wholeGF = span(GL′ , GL).
Thus: L = σx + iβσy + rI is good.
- For η = 1 and c = i r imaginary we get

Q2 ∝ αβσx + (β2 − r2)iσy + αr iσz .
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In this case we have GQ2 ∈ span(GL, GL′) only when β2 = r2 + α2.
- For η < 1, we have additional terms in [FL + DL, GL′ ]. For c real, the GQ1 term in (31)
admits the same property as for GQ2 , but the remaining term belongs to span(GL, GL′) only
when L takes one of the forms leading to a 1-dimensional manifold (see Prop.3). This can be
checked rather easily by writing out the dynamics on the Bloch coordinates and checking the
determinant of the 3×3 matrix concatenating (i) this vector field, (ii) GL and (iii) GL′ .
- For η < 1 and c = i r imaginary, the Q1 is as well parallel to L′ so the GQ1 term of (31)
lies in the already generated subspace of GF . And again, the remaining term with [L,L′]ρL†

adds a third direction to the Lie algebra, unless r = 0. �

Ex.1.b: Let us pursue Ex.1.a and check whether for L = σz + σ−, the system might be
confined to a 2-dimensional time-dependent submanifold of the Bloch sphere for η = 1 (for
η < 1 we already know from Prop.5 that this is not possible). The answer is positive, since
L = (σz + σx/2) + iσy/2 would fit one of the cases of Prop.5 after a rescaling by

√

5/4 and a
rotation around the y axis that brings

√

4/5(σz + σx/2) onto σx. We can also double-check
concretely that this operator satisfies the algebraic rank constraints. Resuming from (23), we
get

[

L, L′] = L+ 1
2L

′ − 5
2σx .

We thus already have span(Gσx , Giσy , Gσz ) ⊆ GF . This matches the form of the third case in
Prop.B.5 for a two-dimensional vector field, i.e. if GF contains no further element then the
system would evolve on a 2-dimensional surface.

For η = 1, this is confirmed by noting that (L† + L)L = ασx + βσz + rI for some
α, β, r ∈ R. Thus examining [FL + DL, GLk

], which by (31) is essentially determined by
2Q2 = [Lk, (L

† + L)L], with Lk ∈ {σx, iσy, σz} yields no new terms in GF . The equation of
the corresponding submanifold is given by (29).

For η < 1, the same applies to 2Q1 = [Lk, L
†L]. The remaining term is more cumbersome

to treat; a numerical test, at a random ρ, readily shows that the generated vector field adds
a third direction; so the system diffuses in all directions. �

Ex.2: According to Prop.5, the single operator L = σ− + i σx would spread the state in 3
dimensions, even for η = 1. One easily generates a few low-order Lie brackets from GF and
checks, on a random ρ, that they indeed yield 3 linearly independent motion directions. �

5.2.1 Several Lindblad operators

Let us now move to dynamics involving two independent operators L1 and L2. Examining this
with the tools of the Appendix involves the algebra generated by the commutator between
L1 and L2. An easily treated example is the heterodyne measurements of Section 3.

Ex.3: Consider a heterodyne measurement, with two measurement operators L and i L. Since
[L, iL] = 0 and FL = Fi L, the possible motions are just the vector sum of those generated in
the homodyne case with L and with i L. Thus when homodyne measurement of L keeps the
system on a deterministic curve (case of Prop.3), the corresponding heterodyne measurement
keeps the system on a 2-dimensional submanifold. For η = 1, other homodyne measurements
might confine the system to a 2-dimensional submanifold (Prop.5); but one checks that for
those case, the associated heterodyne measurement in fact always spreads the state in 3
dimensions. �
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Finally, we can investigate which other pairs of measurement operators L1, L2 might keep
the qubit system on a deterministic submanifold. It turns out that, at least for η < 1, only
the two heterodyne measurement cases of Section 3 remain.

Proposition 6: Consider a quantum master SDE (2) on a qubit with H = 0, several mon-

itored operators Lk and ηk ∈ (0, 1) , starting at an arbitrary initial state ρ(0). The qubit

state ρ(t) at each time t > 0 will be restricted to a deterministically evolving 2-dimensional
manifold if and only if one of the following conditions is satisfied in some orthonormal Hilbert
basis:

• There exist βk, αk ∈ C such that Lk = βk σz + αkI for all k.

• There exist βk ∈ C such that Lk = βk σ− for all k.

Proof: The drift is now the sum of two terms FL1 + FL2 . Recall that we assume the relative
strength of L1 and L2 is not precisely controlled. Therefore we can consider each drift in-
dependently, i.e. in the algebraic conditions of the appendix, GF is the smallest Lie algebra
containing G and closed under Lie brackets with both FL1 and FL2 (instead of just with their
sum). In particular, GF (L1) ⊆ GF and GF (L2) ⊆ GF , so with Prop.5 for η < 1 we are
already restricted to

UjLjU
†
j ∈ {c1σz + c2I, σ−|c1, c2 ∈ C}

with some unitary changes of coordinates Uj ∈ SU(2). Investigating those cases (this is a bit
tedious, see Appendix C), we in fact find that no other pair L1, L2 than the ones listed above
satisfies the Lie algebra condition. �

Ex.4: When ηk = 1 for all k, the commutation formula based on GQ2 , together with
Prop.B.5, allows to identify further possibilities as listed in Appendix C, Proposition C.8,
for which the state would remain on a 2-dimensional submanifold. This holds for instance for
L1 = iσ1 and L2 = iσ2, with any two zero-trace Hermitian operators σ1 and σ2 (case [C]).
One easily checks, via Itô calculus, that the associated deterministic surface is simply

d(x2 + y2 + z2) = 0

which is not really surprising: the motion implied by such measurement operators is just
perfectly observed stochastic Hamiltonian rotation. Obviously in this case, having any number
of measurement operators Lk = iσk, with the σk zero-trace Hermitian, will not change this
property. However for η < 1, due to non-commuting actions if [σ1, σ2] 6= 0, the state would
diffuse in all three dimensions. Physically, this expresses that as the Hamiltonian motion is
not perfectly observed, the uncertainty on rotation angle makes the qubit (“information”)
state converge towards the rotation axes. �

5.3 Adding unmonitored channels

For completeness we can briefly mention an analysis with unmonitored channels, ηj = 0.
We consider the physically typical phase decoherence channel L3 = σz in addition to the
measured L1 = σ− (and L2 = iσ−, in the heterodyne case).

Proposition 7: Consider a quantum master SDE (2) on a qubit with H = 0 and an unmon-
itored operator L1 = σz with η1 = 0.
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• For a heterodyne measurement with L2 = σ− and L3 = iσ−, η2, η3 ∈ (0, 1), the state
will diffuse in all 3 dimensions of the Bloch sphere.

• For a homodyne measurement with L2 = σ− and η2 ∈ (0, 1), the qubit state at each time
t > 0 will be restricted to a deterministically evolving 2-dimensional manifold.

Proof: We again resort to the algebraic criteria from the appendix. Unlike in the previous
section, the Lie algebra G is generated only by σ− (and iσ−, in the heterodyne case), not in-
volving σz. Towards computing GF , we must first apply the general formula (31) of Prop.B.6,
with k ∈ {2, 3} and j ∈ {1, 2, 3}. For j = 2, 3 we have checked in Prop.3 that the Lie brackets
vanish. For j = 1, note that there is no Itô vs. Stratonovitch correction since there is no
associated noise (η1 = 0). Furthermore the term in Q2 vanishes since η1 = 0; the term in

Q1 vanishes as [Lk, L
†
1L1] = [Lk, I] = 0. The remaining term, for j = 1 and k = 2, yields a

vector field
[Fσz , GL2 ] := G̃ : (dx, dy, dz) = (z − 1− x2, −xy, x− xz) .

The latter is not collinear with GL2 .
- For heterodyne measurement, at a generic point of the Bloch sphere, this spans a three-
dimensional space together with Gσ−

and Giσ−
.

- For homodyne measurement, we must check further Lie brackets. Since G̃ is not of the
form GL for some L, we cannot apply (26) nor Prop.B.5 directly. Hence we just look di-
rectly at the vector fields in Bloch coordinates. We get [G̃, GL1 ] ∈ span(G̃,GL1) and also
[Fσz , G̃] ∈ span(G̃,GL1). �

6 Conclusion

In this paper we give analytic expressions for the distribution of state (ρ) of a qubit system
governed by specific quantum Stochastic Differnetial Equations. The success of our analysis
relies on the fact that the system remains confined to a lower-dimensional, deterministically
evolving manifold for (almost) all realizations of the noise processes. Hence in a second step,
we identify and adapt to the case of open quantum systems, a system-theoretic tool which
allows to systematically check whether such confinement of the system occurs. We apply
this method to the qubit case and conclude that essentially, the two main situations explored
in recent experiments are the only ones where such deterministic confinement occurs. The
system-theoretic method, recalled in appendix, is richer than the ones that characterize invari-
ants of quantum systems, because we can identify when the system remains on a submanifold
even if (and in some sense, independently of the fact that) this manifold is time-varying.
For instance for the qubit under σ− measurement, the manifold deterministically collapses
towards the ground state.

We must stress that our characterization of Lindblad operators for which the system
remains on a deterministic submanifold assumes a generic starting point ρ(0), generic values
of the ηk and of the relative strengths of the different operators. When one restricts the system
for instance to start on the surface x2 + y2 + z2 = 1 of the Bloch sphere, these conditions are
not necessary, in particular those proposed in Proposition B.5. Nevertheless, the algebraic
approach proposed in appendix remains fully applicable and adaptable — we just want to
avoid singling out too many sub-cases.
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Future work should investigate how confinement to submanifolds is featured in higher-
dimensional Hilbert spaces. Preliminary computations show that, at least for some experi-
mentally relevant cases, such confinement still appears and allows to extract useful insight
e.g. towards model reduction and/or parameter identification.

The a priori description of quantum evolutions proposed here is more informative than
the traditional solution ρ of the deterministic Lindblad equation [9], which just represents the
average state of the system over the noise realizations. Our results show that the distribution
around this average state can take quite particular forms. Such characterization can be of
practical importance towards more efficiently estimating how the quantum system behaves
in all situations where it is partially observed. In particular, it should help analyze and
design systems where decisions will be taken conditionally on such observations, which include
estimation of model parameters [12] and of course feedback stabilization. More generally, it
might indeed be important towards error correction or information protection to know that
the state, although not confined to a protected subspace, remains on a sort of protected
nonlinear submanifold.
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Appendix: algebraic analysis of the vector fields associated to

quantum SDEs

Although everywhere-singular diffusion appears special in the context of noise-driven pro-
cesses, in a control engineering context the motion achievable with a reduced number of in-
puts has been well characterized. In the present section we want to review how the powerful
tools developed for control engineering allow to readily check whether a quantum stochastic
differential equation (SDE) contains hidden deterministically evolving submanifolds.

A. The classical case

The main idea is to consider the noises as — incidentally random — control inputs. This can
be formally justified by the Stroock-Varadhan theorem [13], which we recall here as adapted
from [4].

Proposition A.0: Consider a stochastic differential equation

dxt = F (xt) dt+

m
∑

j=1

Gj(x) ◦ dW j
t , (24)

with xt ∈ R
N the state, dW 1

t , dW
2
t , ..., dW

m
t independent Wiener processes, x0 fixed and the

dynamics to be understood in the Stratonovitch sense (we therefore use the ◦ symbol). The
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support of the distribution of xt can be described as the closure, for the natural Banach topology
on C([0, 1],RN ), of the set of solutions of the following controlled system:

dx̃t = F (x̃t) dt+

m
∑

j=1

Gj(x̃) du
j
t , (25)

with x̃0 = x0, for all possible control signals u1t , u
2
t , ..., u

m
t in H1([0, 1],Rm).

(The important point is that the control signals can take values in an open set around 0.)

This link is central because the support of a controlled system (25), especially its dimen-
sion, has been well characterized in the literature. We are interested precisely in cases where
this support is of dimension N −n for some n > 0, indicating the presence of n deterministic
coordinates.

We first need to recall a few definitions. These are rather standard and can be found in
textbooks like [7]. Given two vector fields F and G on the same manifold, their Lie bracket
[F,G] corresponds to the Lie derivative of F along G minus the Lie derivative of G along F .
The result is a vector field which needs not be parallel to neither F nor G, and it gives an
idea of motion directions generated by alternating infinitesimal motions with F and G.

Definition A.1: The Lie algebra G generated by vector fields G1, G2, ..., Gm is the smallest
algebra, closed under Lie brackets, that contains G1, G2, ..., Gm. In other words, it is the vector
space spanned by the G1, G2, ..., Gm and by all vector fields that are obtained by iterating Lie
brackets of these elements. Finally, the drift-preserved Lie algebra GF is the smallest Lie
algebra containing G and closed under Lie brackets with F , i.e. for any G ∈ GF we have
[F,G] ∈ GF . Note that F itself need not belong to GF .

Consider the controlled system (25). From a given initial condition x0, by selecting differ-
ent control signals u1t , u

2
t , ..., u

m
t , the user can steer the system towards different states xt at

time t. It is clear that if the Gj(x) span RN at almost every x (thus m ≥ N), then the user
can steer the state in any direction. However, even for m < N , the system can still reach any
state if the Lie algebra G generated by G1, G2, ..., Gm spans RN . This indeed indicates that
by smartly alternating between G1, G2, ..., Gm, new directions of motion can effectively be
obtained. This is the principle allowing a car to effectively move sidewards by using the well-
known parking maneuver. The drift F alone does not imply control capabilities. However,
combining this drift with control fields might further help to steer the system in an unactu-
ated direction; e.g. an airplane whose translation velocity is fixed can also move “sidewards”
with respect to its reference trajectory.

When the control inputs represent noise processes, deterministic evolution of some coor-
dinates correspond to cases where the noise cannot induce effective motion in all directions.
More precisely, the concept that we examine is strong accessibility.

Definition A.2: The system (25) is strongly accessible at a point x0 if the set of all its
possible solutions xt at time t > 0, over all possible choices of the signals uj , forms an open
subset of RN . It is strongly accessible in N − n dimensions if the set of possible solutions all
lie in, and form an open subset of, an N − n dimensional submanifold of RN .

In this definition the set of all possible xt does not have to be a neighborhood of x0: whilst
spreading out along all dimensions, the state might also be subject to a drift. Replacing
controls by noises according to Proposition A.0, the N −n dimensions are those in which the
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state effectively diffuses stochastically (e.g. dimension of the set of points that the car with
Wiener as a driver can reach). The possible drift allowed by the definition expresses that the
manifold supporting the state distribution need not be invariant in time, but might evolve
deterministically.

The following result from control theory allows to assess the number of strongly accessible
dimensions of a controlled system from algebraic properties of its vector fields [7].

Proposition A.3: The system (25) with analytic functions F,G1, ..., Gm is strongly accessible
at x0 if and only if the Lie algebra GF associated to these vector fields has full dimension N
at x0. Moreover, if GF has dimension at most N − n < N for all x0, then the system stays
on a (time-dependent) manifold of dimension N − n, independently of the control inputs.

Proposition A.0 translates this directly to stochastic differential equations driven by
Wiener processes in Stratonovitch form.

B. The quantum case

In principle, Proposition A.3 can be applied directly to check whether a given quantum
stochastic differential equation on a finite-dimensional Hilbert space features hidden deter-
ministically evolving coordinates. The vector fields F,Gj exactly match the expressions in
(1), only with x ∈ R

N replaced by ρ ∈ R
N×N which is still a vector space.

A few specificities of the quantum case can be addressed to facilitate its use. In the
following, spans or linear combinations are meant with real coefficients whenever unspecified.

B.1 Quantum operators vs. vector fields

The Lie algebra G associated to the noise terms can be computed directly from the quantum
operators. Indeed,

[GLj
, GLk

] = G[Lj , Lk] (26)

i.e. the Lie bracket between the vector fields translates into the commutator of the associated
quantum operators. The simple proof is included in the proof of Prop.B.6. Lie brackets with
drift terms are not (always) as easy to compute. Some formulas are provided later.

A second question is to decide, directly from the quantum master equation, when a set of
vector fields is linearly dependent. By linearity of GL in L and L†, it is clear that if L1, L2, L3

are linearly dependent with real coefficients, then also GL1 , GL2 , GL3 are linearly dependent.
This condition is however not necessary. For instance, L = I would give GI = 0 which is
collinear to any other vector field. Thus this requires a bit more analysis.

We here only consider vector fields of the form GL with L independent of ρ. In general,
vector fields resulting from brackets with the drift F need not be of that form, i.e. they can
be equivalent to GL(ρ) with L depending on ρ, and this may require further investigation
towards linear dependencies. Note however that the results on linear independence with L
independent of ρ, of course remain valid for vector fields of the type Gg(ρ)L with g(ρ) a scalar
real function, since such ρ-dependence does not affect the direction of the vector field. The
analysis behind the present paper never had to consider other cases than this, except once
for Proposition 7, where we have then analyzed the vector field directly in Bloch sphere
coordinates.
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It is easy to check that GL+αI = GL for any operator L and any α ∈ C (although the same
is not true for FL). Therefore we assume trace(L) = 0 in the following statements, towards
better readibility. When using these results in the main paper we will thus always reduce the
trace of the considered operators.

It is also important to note that we consider criteria for vector fields to be linearly depen-
dent on a dense subset of the Bloch sphere. E.g. when one restricts the system to start on
the surface x2 + y2 + z2 = 1 of the Bloch sphere, the following conditions are not necessary,
and the conclusions that make use of this result must be revised.

Proposition B.4: Restricting to trace(Li) = 0, we have that GL1 and GL2 are linearly
dependent at each ρ if and only if L2 = αL1 for some α ∈ R.
Proof: The ‘if’ direction is just a check. For the ‘only if’, we first observe that collinearity of
the vector fields at ρ = I/trace(I) requires L1 +L†

1 parallel to L2 +L†
2, i.e. Lk = αkA+ iBk,

k = 1, 2 with A,B1, B2 hermitian operators and α1, α2 ∈ R.
• Assume α2 6= 0. Write ρ = I + ǫρ̄, write the collinearity condition GL1(ρ̄) = g(ρ̄)GL2(ρ̄)
for some scalar function g(ρ̄) (note that GL2 does not vanish in the neighborhood of ρ =
I/trace(I)), and expand g(ρ̄) in powers of ǫ. The first order term requires the direction of
[α2B1−α1B2, ρ̄] to be independent of ρ̄. For α2 6= 0 6= α1, this implies B1/α1 = B2/α2 hence
in fact L1/α1 = L2/α2. For α2 6= α1 = 0, this requires B1 = 0 hence in fact one vector field
is absent.
• For α1 = α2 = 0 we get the condition [B1, ρ] parallel to [B2, ρ] for all rho. There are several
ways to show that also this must imply B1 = αB2 for some α ∈ R. �

With three vector fields, as the result appears to be nontrivial, we specialize to the qubit
case, where we can write a general traceless operator as:

Lk = αkσx + βkσy + γkσz + iα̃kσx + iβ̃kσy + iγ̃kσz . (27)

We then define vrk := (αk, βk, γk) ∈ R
3, vik := (α̃k, β̃k, γ̃k) ∈ R

3 and vk = (vrk, v
i
k) ∈ R

6. We
can then have linear dependencies among GLk

although the Lk are linearly independent.

Proposition B.5: Three operators L1, L2, L3 for a qubit system lead to vector fields GLk

whose directions are linearly dependent at each ρ, if and only if the operators’ expressions vk
according to (27) satisfy one of the following conditions.

• Option 1: the vectors v1, v2, v3 are linearly dependent;

• Option 2: vr1 = vr2 = vr3 = 0, while vi1, v
i
2, v

i
3 can be arbitrary;

• Option 3: vr1, v
r
2, v

r
3 span a two-dimensional space S ⊂ R

3, and there exists β ∈ R such
that PS(v

i
k) = β yvrk for k = 1, 2, 3; here PS denotes the orthogonal projection onto S

and yv is the vector v rotated clockwise (for some convention) by π/2 in S.
(Note that if vr1, v

r
2, v

r
3 span a one-dimensional space, then linear dependence of the GLk

re-
quires linear dependence of v1, v2, v3.)

Proof: The most direct way to reach the conclusion is to write the vectors fields in Bloch
coordinates x, y, z:

(G)x = α− β̃z + γ̃y − (αx+ βy + γz)x (28)

(G)y = β − γ̃x+ α̃z − (αx + βy + γz) y

(G)z = γ + β̃x− α̃y − (αx+ βy + γz) z .
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From this we immediately see that at x = y = z = 0 the vector field is vr, so to have a
two-dimensional vector field in the neighborhood of x = y = z = 0 we need the vrk to be
linearly dependent.

When vr1 = vr2 = vr3 = 0, we get a purely rotating vector field, tangent to the surfaces
x2 + y2 + z2 =constant; this is option 2. If we are not in this situation, without loss of
generality, we can assume v1 := (1, 0, 0, α̃1, β̃1, 0). Since GLk

is linear in the coefficients
of vk, taking linear combinations of the vk will not change the linear dependencies in the
GLk

. (In particular, if v3 can be expressed as a linear combination of v1, v2, then also GL3

can be expressed at any point as the same linear combination of GL1 , GL2 , which directly
gives option 1; we also recover this from the following general case.) We can thus take such
linear combinations as long as we keep track of them to re-express the original conditions on
v1, v2, v3. Given the form of v1, we can make α2 = α3 = 0 possibly after transforming v2, v3
by linear combination with v1. Then given linear dependency of the vrk we can make vr3 = 0.

From there, we obtain the result by explicitly examining linear dependence between the
three instances of (28). Write out the determinant of the 3×3 matrix for the general case,
this gives a polynomial in x, y, z whose coefficients must all equal zero. Manageable condi-
tions on the parameters are obtained by evaluating the polynomial at smartly selected points
e.g. x = y = z, and this gives the announced result. �

Let us briefly comment about these options.

• In the second option, all the Lk would be skew-Hermitian, and the resulting dynamics
is a pure rotation of the Bloch vector; one then easily understands that if those were
the only terms in the dynamics, whatever noises are applied, the system would stay on
a manifold of constant purity.

• An example of the third case would be L1 = σx + βiσz, L2 = σz − βiσx and L3 = i σy;
this is general modulo basis change and taking real linear combinations. One checks
that this set is indeed closed under commutators, i.e. [Li, Lj ] ∈ span{L1, L2, L3 } for all
i, j. In fact, both GL3 , and cosφGL1 + sinφGL2 for a point where x cosφ+ z sinφ = 0,
imply rotations around the y axis of the Bloch sphere. The second motion direction is
given by cosφGL2 − sinφGL1 . One then sees that dc is not influenced by noise for

c =
1− (x2 + y2 + z2)

(y + β)2
. (29)

In Section 5.1, example 1.b, this situation appears for an actual deterministic subman-
ifold — i.e. in combination with the associated drift fields — when η = 1.

B.2 Stratonovitch vs. Itô

The quantum master equation must be understood in the Itô sense, while the correspondence
between Wiener processes and controls in Prop. A.0 holds in the Stratonovitch sense. The
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translation between these two formalisms involves a correction on the drift term:

Itô dxt = F (xt) dt+
m
∑

j=1

Gj(x) dW
(j)
t ,

m

Strato. dxt =



F (xt) +
m
∑

j=1

Dj(xt)



 dt+
m
∑

j=1

Gj(x) ◦ dW j
t

with Dj = −1

2

N
∑

ℓ=1

∂Gj

∂xℓ
(Gj)ℓ(x) , (30)

where (Gj)ℓ denotes the component ℓ of the vector Gj . In general, confusing Itô with
Stratonovich would not give the same result for the dimension of the support.2

For the quantum master equation, we can give the explicit form directly for the commu-
tation of a Stratonovitch-corrected drift with a G-type vector field.

Proposition B.6: In the quantum formalism, the Lie bracket between drift — translated to
Stratonovich form — and control terms is given by:

[FLj
+DLj

, GLk
](ρ) = (1− ηj)

(

[Lj , Lk]ρL
†
j − trace([Lj , Lk]ρL

†
j)ρ + h.c.

)

+(1− ηj)GQ1(ρ)

+ηj (u.i. +GQ2)(ρ) (31)

with Q1 = 1
2 [Lk, L

†
jLj] ;

Q2 = 1
2

[

Lk , (L
†
j + Lj)Lj

]

;

h.c. and u.i. denoting resp. hermitian conjugate, and unimportant terms towards Prop.A.3.

Proof: We will assume ηj 6= 0, else the treatment basically simplifies to get the same result.
From (30), the Stratonovitch form of the quantum master equation is obtained by replacing
FLj

by (1− ηj)FLj
+ ηj (FLj

+ 1
ηj
DLj

) with

FLj
+ 1

ηj
DLj

= −1

2
(L†

jLjρ+ ρL†
jLj + (Lj)

2ρ+ ρ(L†
j)

2 )

+
1

2
trace(L†

jLjρ+ ρL†
jLj + (Lj)

2ρ+ ρ(L†
j)

2 ) ρ

+trace(Ljρ+ ρL†
j)(Ljρ+ ρL†

j)−
(

trace(Ljρ+ ρL†
j)
)2

ρ .

For a term f(ρ) linear in ρ, we have ∆gf |ρ = f(g(ρ)) where ∆g denotes the Lie derivative
along any vector field g tangent to the state space at ρ. For nonlinear terms, one just applies

2For instance if F = 0, m = 1 it is clear that GF = span{G1} i.e. the controlled system (25) would move
in one dimension, the control only determines the speed of evolution in time. The same would be true for the
Stratonovitch setting (24), with the Wiener process just randomly varying the speed of evolution. However
if this F and G1 were associated to an Itô setting, then the associated Stratonovitch equation might imply
motion in several dimensions. Indeed, take e.g. (G1)k(x) = (xk)

2, one computes that [D1, G1]k ∝ (xk)
4. For

almost all x ∈ R
N , this vector field is not parallel to G1.
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the Leibnitz rule. E.g. working out

∆gGL |ρ = Lg(ρ) + g(ρ)L†

−trace(Lg(ρ) + g(ρ)L†) ρ

−trace(Lρ+ ρL†) g(ρ)

leads directly to (26). Applying a similar procedure to FLj
+ 1

ηj
DLj

leads, after some tedious

but uncomplicated computations, to

[FLj
+ 1

ηj
DLj

, GLk
] = GQ(ρ) with

Q(ρ) =

[

Lk ,

(

L†
j+Lj

2 − trace(Ljρ+ ρL†
j)

)

Lj

]

(32)

+
(

trace
(

(Lj + L†
j)(Lkρ+ ρL†

k)
)

− trace(Ljρ+ ρL†
j)trace(Lkρ+ ρL†

k)
)

Lj .(33)

The second line contains an operator in the form g(ρ)Lj with g a real scalar function of ρ.
Thus the associated vector field is parallel to the already present vector field GLj

. Similarly,
the first line contains a term of the form g(ρ)[Lk, Lj ], whose associated vector field is already
in the Lie algebra G involving GLj

and GLk
, see the formula (26).

One easily checks that these terms do not affect the Lie algebra at higher orders. By thus
dropping these unimportant terms in (32), we get the term in Q2 of (31).

The other terms in (31) are obtained directly by working out [FLj
, GLk

] with Lie deriva-
tives using the Leibnitz rule. �

The general formula (31) might be of limited use in practice, because it is not of the form
GH(ρ) for a constant operator H. However, it allows us to treat several physically relevant
examples for which the expressions simplify. A first case is when ηj = 1, and only GQ2(ρ)
remains. Another practical corollary, which appears at least every time we check the bracket
with j = k, is when [Lj , Lk] = 0:

Corollary B.7: If [Lj , Lk] = 0, then the Stratonovitch correction has no effect on the Lie
bracket between drift associated to Lj and control terms associated to Lk in the quantum
master SDE. Moreover, the Lie bracket reduces to:

[FLj
+DLj

, GLk
] = GQ2(ρ) with Q2 =

1
2 [Lk, L

†
j]Lj . (34)

C. General form for L1, L2 confining to a 2-dimensional submanifold

For η = 1, we have the following result. It goes beyond the scope of this work to provide
interpretations for all those cases.

Proposition C.8 For η = 1, besides the cases of heterodyne or homodyne measurements, the
pairs of Lindblad operators L1, L2 which keep the system on a 2-dimensional submanifold of
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the Bloch sphere comprise up to basis changes:

[A] L1 = σz + r1 I

L2 = cos θ σz + sin θ σx + r2 I

with any θ, r1, r2 ∈ R

[B] L1 = i σz + c1 I

L2 = σx + r2 I

with any c1 ∈ C, r2 ∈ R

[C] L1 = i σz + c1 I

L2 = i (cos θ σz + sin θ σx) + c2 I

with any θ ∈ R, c1, c2 ∈ C

[D] L1 = cos θ1 σx + i sin θ1 σy + r1 I

L2 = cos θ2 σx + sin θ2 σz + r2 I

with any θ1, θ2, r1, r2 ∈ R

[E] L1 = cos θ σx + i sin θ σy + r1 I

L2 = iσy + c2 I

with any θ, r1 ∈ R, c2 ∈ C

[F ] L1 = σx + β1 iσy + r1 I

L2 = cos θ σx + sin θ σz + β2 iσy + r2 I

with any θ, β1, β2, r1, r2 ∈ R

[G] L1 = cos θ1 σx + i σy + sin θ1 i I

L2 = cos θ2 σx + i (cos φσy + sinφσz) + sin θ2 i I

with any θ1, θ2 ∈ R and φ = θ1 − θ2 .

Sketch of the Proof: The main text already states conditions under which a single measure-
ment operator will not diffuse in all directions, see Prop.5. In order to stay confined to a
submanifold with two measurement operators, we must already request each L1 and L2 indi-
vidually to imply confinement, i.e. Lk = UkL

′
kU

†
k , with Uk unitary and L′

k an operator from
Prop.5 with η = 1, for both k = 1, 2. We illustrate the procedure when taking L′

1 = eiφ1σz,
L′
2 = eiφ2σz. For the other cases, the approach is essentially the same, although the algebraic

computations can be tedious.
Without loss of generality, i.e. under unitary coordinate changes, the considered case is

represented by L1 = eiφ1σz + c1I and L2 = eiφ2(ασx + γσz) + c2I. To avoid cases where GL1

and GL2 are already collinear — i.e. covered in previous results — we impose α = 1.
- We first require G to remain two-dimensional, for which we need G[L1,L2] in the span of GL1

and GL2 . From [L1, L2] = ei(φ1+φ2)iσy and Prop.B.5, we identify essentially three cases where
this holds: (L1, L2) = (iσz, i(σx + γσz) [case (a)], or (L1, L2) = (σz, σx + γσz) [case (b)], or
(L1, L2) = (iσz , σx) [case (c)]. In all these cases, arbitrary terms c1I and c2I may be added
to the operators.
- We have [FL1 + DL1 , GL1 ] ∈ G and [FL2 + DL2 , GL2 ] ∈ G because they were already
collinear with GL1 and GL2 respectively. Thus there remains to check, for the various cases
above, whether [FL1 + DL1 , GL2 ] ∈ G and [FL2 + DL2 , GL1 ] ∈ G. Using (31) for η = 1,
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this investigation boils down to checking Q2 ∝ [Lk, (L
†
j + Lj)Lj]. For case (a), we have

(L†
j + Lj)Lj = (cj + c†j)Lj hence Q2 ∝ [L1, L2]. For case (b), we have (L†

j + Lj)Lj composed
of terms proportional to I, Lj, and cjLj. For cj complex this yields Q2 = Qa + Qb with
Qa ∝ Re(cj)[L1, L2], and Qb ∝ Im(rj)σy. The latter necessarily adds a third dimension to
GF ; thus we need Im(r1) = Im(r2) = 0. For case (c) we have the situation of case (a) or (b)
respectively, for j = 1 or j = 2, thus we need Im(r2) = 0. Then in all three cases, GF = G

and indeed the system would remain confined to a two-dimensional submanifold of the Bloch
sphere. �

Towards proving Prop.6, we first select the subcases from Prop.C.8 for which L1 individ-
ually (and L2 individually) would keep the system on a 2-dimensional manifold also when
η < 1, according to Prop.5. We then compute the additional term of [FL1 +DL1 , GL2 ] and
write it out in Bloch coordinates. We also write out GL1 and GL2 in Bloch coordinates. After
concatenating those 3 vector fields in a 3×3 matrix, checking their linear dependence amounts
to checking the singularity conditions of the matrix. Doing this for the general case yields
the final result.
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