K. C. Badgujar and B. M. Bhanage, Factors governing dissolution process of lignocellulosic biomass in ionic liquid: Current status, overview and challenges, Bioresource Technology, vol.178, pp.2-18, 2015.
DOI : 10.1016/j.biortech.2014.09.138

C. A. Angell, N. Byrne, and J. P. Belieres, Parallel Developments in Aprotic and Protic Ionic Liquids: Physical Chemistry and Applications, Accounts of Chemical Research, vol.40, issue.11, pp.1228-123610, 2007.
DOI : 10.1021/ar7001842

URL : http://www.public.asu.edu/~caangell/457 Parallel Developments in Aprotic and protic Ionic Liquids PUB.pdf

T. J. Simons, Influence of Zn2+ and water on the transport properties of a pyrrolidinium dicyanamide ionic liquid. The journal of physical chemistry, pp.4895-490510, 2014.

M. Olkiewicz, A novel recovery process for lipids from microalg?? for biodiesel production using a hydrated phosphonium ionic liquid, Green Chemistry, vol.128, issue.216, pp.2813-2824, 2015.
DOI : 10.1063/1.2925258

H. B. Xie, X. Yu, Y. L. Yang, and Z. K. Zhao, for cellulose dissolution, Green Chem., vol.5, issue.5, pp.2422-242710, 2014.
DOI : 10.1039/c2ee02912j

J. Sakuda, M. Yoshio, T. Ichikawa, H. Ohno, and T. Kato, 2D assemblies of ionic liquid crystals based on imidazolium moieties: formation of ion-conductive layers, New Journal of Chemistry, vol.109, issue.6, pp.4471-447710, 2015.
DOI : 10.1021/jp051673c

S. Fister, The use of ionic liquids for cracking viruses for isolation of nucleic acids, Separation and Purification Technology, vol.155, pp.38-44035, 2015.
DOI : 10.1016/j.seppur.2015.03.035

N. V. Plechkova and K. R. Seddon, Applications of ionic liquids in the chemical industry, Chem. Soc. Rev., vol.447, issue.19, pp.123-15010, 2008.
DOI : 10.1038/nature05909

D. A. Fort, Can ionic liquids dissolve wood? Processing and analysis of lignocellulosic materials with 1-n-butyl-3-methylimidazolium chloride, Green Chem., vol.3, issue.1, pp.63-6910, 2007.
DOI : 10.1039/b103275p

R. P. Swatloski, S. K. Spear, J. D. Holbrey, and R. D. Rogers, Dissolution of Cellose with Ionic Liquids, Journal of the American Chemical Society, vol.124, issue.18, pp.4974-497510, 2002.
DOI : 10.1021/ja025790m

URL : http://web.centre.edu/workmanj/che 454 stuff/ilcellulose.pdf

R. C. Remsing, Solvation of carbohydrates in n,n'-dialkylimidazolium ionic liquids: a multinuclear NMR spectroscopy study. The journal of physical chemistry, pp.11071-1107810, 2008.

A. Pinkert, K. N. Marsh, S. Pang, and M. P. Staiger, Ionic Liquids and Their Interaction with Cellulose, Chemical Reviews, vol.109, issue.12, pp.6712-672810, 2009.
DOI : 10.1021/cr9001947

C. S. Lovell, Influence of Cellulose on Ion Diffusivity in 1-Ethyl-3-Methyl-Imidazolium Acetate Cellulose Solutions, Biomacromolecules, vol.11, issue.11, pp.2927-2935, 2010.
DOI : 10.1021/bm1006807

URL : https://hal.archives-ouvertes.fr/hal-00574159

R. Sescousse, K. A. Le, M. E. Ries, and T. Budtova, Viscosity of cellulose-imidazolium-based ionic liquid solutions. The journal of physical chemistry, pp.7222-722810, 2010.
DOI : 10.1021/jp1024203

URL : https://hal.archives-ouvertes.fr/hal-00509754

J. L. Song, H. L. Fan, J. Ma, and B. Han, Conversion of glucose and cellulose into value-added products in water and ionic liquids, Green Chemistry, vol.15, issue.436, pp.2619-263510, 2013.
DOI : 10.1039/c3gc40667a

M. E. Ries, A. Radhi, A. S. Keating, O. Parker, and T. Budtova, Diffusion of 1-Ethyl-3-methyl-imidazolium Acetate in Glucose, Cellobiose, and Cellulose Solutions, Biomacromolecules, vol.15, issue.2, pp.609-61710, 2014.
DOI : 10.1021/bm401652c

URL : https://hal.archives-ouvertes.fr/hal-00960751

A. Radhi, K. A. Le, M. E. Ries, and T. Budtova, Macroscopic and microscopic study of 1-ethyl-3-methyl-imidazolium acetate-DMSO mixtures. The journal of physical chemistry, pp.1633-164010, 2015.
DOI : 10.1021/jp5112108

URL : https://hal.archives-ouvertes.fr/hal-01115473

D. Klemm, B. Heublein, H. P. Fink, and A. Bohn, Cellulose: Fascinating Biopolymer and Sustainable Raw Material, Angewandte Chemie International Edition, vol.34, issue.55, pp.3358-3393, 2005.
DOI : 10.1533/9781845693749.6.357

B. Lindman, G. Karlström, and L. Stigsson, On the mechanism of dissolution of cellulose, Journal of Molecular Liquids, vol.156, issue.1, pp.76-81016, 2010.
DOI : 10.1016/j.molliq.2010.04.016

B. Medronho, A. Romano, M. G. Miguel, L. Stigsson, and B. Lindman, Rationalizing cellulose (in)solubility: reviewing basic physicochemical aspects and role of hydrophobic interactions, Cellulose, vol.40, issue.14, pp.581-587, 2012.
DOI : 10.1002/polb.10215

J. S. Moulthrop, R. P. Swatloski, G. Moyna, and R. D. Rogers, High-resolution 13C NMR studies of cellulose and cellulose oligomers in ionic liquid solutions, Chemical Communications, vol.26, issue.12, pp.1557-155910, 2005.
DOI : 10.1039/b417745b

H. Zhang, J. Wu, J. Zhang, and J. S. He, 1-Allyl-3-methylimidazolium Chloride Room Temperature Ionic Liquid:?? A New and Powerful Nonderivatizing Solvent for Cellulose, Macromolecules, vol.38, issue.20, pp.8272-827710, 2005.
DOI : 10.1021/ma0505676

T. Erdmenger, C. Haensch, R. Hoogenboom, and U. S. Schubert, Homogeneous Tritylation of Cellulose in 1-Butyl-3-methylimidazolium Chloride, Macromolecular Bioscience, vol.13, issue.4, pp.440-44510, 2007.
DOI : 10.1080/07366579008050914

J. Vitz, T. Erdmenger, C. Haensch, and U. S. Schubert, Extended dissolution studies of cellulose in imidazolium based ionic liquids, Green Chemistry, vol.9, issue.3, pp.417-42410, 2009.
DOI : 10.15227/orgsyn.082.0166

B. D. Rabideau, A. Agarwal, and A. Ismail, The role of the cation in the solvation of cellulose by imidazolium-based ionic liquids. The journal of physical chemistry, pp.1621-162910, 2014.

B. D. Rabideau and A. E. Ismail, Mechanisms of hydrogen bond formation between ionic liquids and cellulose and the influence of water content. Physical chemistry chemical physics: PCCP 17, pp.5767-577510, 2015.

Y. Fukaya, A. Sugimoto, and H. Ohno, Superior Solubility of Polysaccharides in Low Viscosity, Polar, and Halogen-Free 1,3-Dialkylimidazolium Formates, Biomacromolecules, vol.7, issue.12, pp.3295-329710, 2006.
DOI : 10.1021/bm060327d

M. Gericke, K. Schlufter, T. Liebert, T. Heinze, and T. Budtova, Rheological Properties of Cellulose/Ionic Liquid Solutions: From Dilute to Concentrated States, Biomacromolecules, vol.10, issue.5, pp.1188-119410, 2009.
DOI : 10.1021/bm801430x

URL : https://hal.archives-ouvertes.fr/hal-00509464

A. R. Xu, J. J. Wang, and H. Wang, Effects of anionic structure and lithium salts addition on the dissolution of cellulose in 1-butyl-3-methylimidazolium-based ionic liquid solvent systems, Green Chem., vol.7, issue.2, pp.268-27510, 2010.
DOI : 10.1039/b412848f

A. R. Xu, J. J. Wang, Y. J. Zhang, and Q. Chen, Effect of Alkyl Chain Length in Anions on Thermodynamic and Surface Properties of 1-Butyl-3-methylimidazolium Carboxylate Ionic Liquids, Industrial & Engineering Chemistry Research, vol.51, issue.8, pp.3458-346510, 2012.
DOI : 10.1021/ie201345t

A. R. Xu, Y. B. Zhang, W. W. Lu, K. S. Yao, and H. Xu, Effect of alkyl chain length in anion on dissolution of cellulose in 1-butyl-3-methylimidazolium carboxylate ionic liquids, Journal of Molecular Liquids, vol.197, pp.211-214018, 2014.
DOI : 10.1016/j.molliq.2014.05.018

A. W. King, Relative and inherent reactivities of imidazolium-based ionic liquids: the implications for lignocellulose processing applications, RSC Advances, vol.4, issue.21, pp.8020-802610, 2012.
DOI : 10.1002/cssc.201000272

B. Zhao, L. Greiner, and W. Leitner, Cellulose solubilities in carboxylate-based ionic liquids, RSC Advances, vol.100, issue.6, pp.10-1039, 2012.
DOI : 10.1016/j.biortech.2008.11.052

Y. Zhang, A. Xu, B. Lu, Z. Li, and J. Wang, Dissolution of cellulose in 1-allyl-3-methylimizodalium carboxylates at room temperature: A structure???property relationship study, Carbohydrate Polymers, vol.117, pp.666-672, 2015.
DOI : 10.1016/j.carbpol.2014.08.101

J. M. Andanson, A. A. Padua, and M. F. Costa-gomes, Thermodynamics of cellulose dissolution in an imidazolium acetate ionic liquid, Chemical Communications, vol.133, issue.21, pp.4485-448710, 2015.
DOI : 10.1021/ja2046155

URL : https://hal.archives-ouvertes.fr/hal-01212245

D. L. Minnick, R. A. Flores, M. R. Destefano, and A. M. Scurto, Cellulose Solubility in Ionic Liquid Mixtures: Temperature, Cosolvent, and Antisolvent Effects. The journal of physical chemistry, pp.7906-7919, 2016.
DOI : 10.1021/acs.jpcb.6b04309

A. Michud, M. Hummel, S. Haward, and H. Sixta, Monitoring of cellulose depolymerization in 1-ethyl-3-methylimidazolium acetate by shear and elongational rheology, Carbohydrate Polymers, vol.117, pp.355-363075, 2015.
DOI : 10.1016/j.carbpol.2014.09.075

M. T. Clough, Ionic liquids: not always innocent solvents for cellulose, Green Chemistry, vol.16, issue.1, pp.231-24310, 2015.
DOI : 10.1039/C4CP02219J

URL : http://pubs.rsc.org/en/content/articlepdf/2015/gc/c4gc01955e

A. Parviainen, Predicting Cellulose Solvating Capabilities of Acid-Base Conjugate Ionic Liquids, ChemSusChem, vol.64, issue.11, pp.2161-216910, 2013.
DOI : 10.1107/S0108767307043930

J. G. Huddleston, Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation, Green Chemistry, vol.3, issue.4, pp.156-164, 2001.
DOI : 10.1039/b103275p

S. Fendt, S. Padmanabhan, H. W. Blanch, and J. M. Prausnitz, Viscosities of Acetate or Chloride-Based Ionic Liquids and Some of Their Mixtures with Water or Other Common Solvents, Journal of Chemical & Engineering Data, vol.56, issue.1, pp.31-3410, 2011.
DOI : 10.1021/je1007235

H. Tokuda, K. Hayamizu, K. Ishii, M. Abu-bin-hasan-susan, and M. Watanabe, Physicochemical Properties and Structures of Room Temperature Ionic Liquids. 1. Variation of Anionic Species, The Journal of Physical Chemistry B, vol.108, issue.42, pp.16593-1660010, 2004.
DOI : 10.1021/jp047480r

H. Tokuda, K. Hayamizu, K. Ishii, M. A. Susan, and M. Watanabe, Physicochemical properties and structures of room temperature ionic liquids. 2. Variation of alkyl chain length in imidazolium cation. The journal of physical chemistry, pp.6103-611010, 2005.

H. Tokuda, Physicochemical properties and structures of room-temperature ionic liquids. 3. Variation of cationic structures. The journal of physical chemistry, pp.2833-283910, 2006.

Y. Wang and G. A. Voth, Unique Spatial Heterogeneity in Ionic Liquids, Journal of the American Chemical Society, vol.127, issue.35, pp.12192-1219310, 2005.
DOI : 10.1021/ja053796g

URL : http://power.itp.ac.cn/~wangyt/papers/jacs-2005.pdf

Y. Wang and G. A. Voth, Tail aggregation and domain diffusion in ionic liquids. The journal of physical chemistry, pp.18601-18608, 2006.
DOI : 10.1021/jp063199w

Y. Zhao, S. Gao, J. Wang, and J. Tang, O:?? A NMR Study, The Journal of Physical Chemistry B, vol.112, issue.7, pp.2031-203910, 2008.
DOI : 10.1021/jp076467e

M. B. Shiflett and A. Yokozeki, Phase Behavior of Carbon Dioxide in Ionic Liquids: [emim][Acetate], [emim][Trifluoroacetate], and [emim][Acetate] + [emim][Trifluoroacetate] Mixtures, Journal of Chemical & Engineering Data, vol.54, issue.1, pp.108-11410, 2009.
DOI : 10.1021/je800701j

C. A. Hall, Macroscopic and microscopic study of 1-ethyl-3-methyl-imidazolium acetate-water mixtures. The journal of physical chemistry, pp.12810-1281810, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00749916

J. Hou, Z. Zhang, and L. A. Madsen, Cation/anion associations in ionic liquids modulated by hydration and ionic medium. The journal of physical chemistry, pp.4576-458210, 2011.
DOI : 10.1021/jp1110899

E. V. Mclaughlin, and Self-Diffusion in Liquids, Transactions of the Faraday Society, vol.55, issue.28, pp.10-1017, 1958.

M. D. Lingwood, Unraveling the local energetics of transport in a polymer ion conductor, Chemical Communications, vol.502, issue.39, pp.4283-428510, 2013.
DOI : 10.1016/S0022-0728(00)00368-5

D. J. Gisser and M. D. Ediger, Modification of solvent rotational dynamics by the addition of small molecules or polymers, The Journal of Physical Chemistry, vol.97, issue.41, pp.10818-10823, 1993.
DOI : 10.1021/j100143a048

R. E. Powell, W. E. Roseveare, and H. Eyring, Diffusion, Thermal Conductivity, and Viscous Flow of Liquids, Industrial & Engineering Chemistry, vol.33, issue.4, pp.430-43510, 1941.
DOI : 10.1021/ie50376a003

J. H. Antony, 13C NMR relaxation rates in the ionic liquid 1-methyl-3-nonylimidazolium hexafluorophosphate. The journal of physical chemistry, A, vol.109, pp.6676-668210, 2005.

R. Schiller, The Stokes-Einstein law by macroscopic arguments, International Journal of Radiation Applications and Instrumentation. Part C. Radiation Physics and Chemistry, vol.37, issue.3, pp.549-55090033, 1991.
DOI : 10.1016/1359-0197(91)90033-X

T. Köddermann, R. Ludwig, and D. Paschek, On the Validity of Stokes-Einstein and Stokes-Einstein-Debye Relations in Ionic Liquids and Ionic-Liquid Mixtures, ChemPhysChem, vol.7, issue.174, pp.1851-185810, 2008.
DOI : 10.1515/zna-1953-0903

S. M. Urahata and M. C. Ribeiro, Single particle dynamics in ionic liquids of 1-alkyl-3-methylimidazolium cations, The Journal of Chemical Physics, vol.4, issue.2, pp.10-1063, 2005.
DOI : 10.1590/S0103-50532004000300002

G. W. Driver, Correlated/non-correlated ion dynamics of charge-neutral ion couples: the origin of ionicity in ionic liquids, Phys. Chem. Chem. Phys., vol.131, issue.3, pp.4975-498810, 2017.
DOI : 10.1063/1.3269991

C. I. Daniel, 1H NMR relaxometry, viscometry, and PFG NMR studies of magnetic and nonmagnetic ionic liquids. The journal of physical chemistry, pp.11877-1188410, 2013.

C. I. Daniel, F. Vaca-chavez, C. A. Portugal, J. G. Crespo, and P. J. Sebastiao, 1H NMR Relaxation Study of a Magnetic Ionic Liquid as a Potential Contrast Agent. The journal of physical chemistry, pp.11740-11747, 2015.

A. O. Seyedlar, S. Stapf, and C. Mattea, Dynamics of the ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethylsulphonyl) imide studied by nuclear magnetic resonance dispersion and diffusion. Physical chemistry chemical physics, pp.1653-165910, 2015.

D. Kruk, M. Wojciechowski, S. Brym, and R. K. Singh, Dynamics of ionic liquids in bulk and in confinement by means of 1H NMR relaxometry -BMIM-OcSO4 in an SiO2 matrix as an example. Physical chemistry chemical physics: PCCP 18, pp.23184-2319410, 2016.

A. Rachocki, E. Andrzejewska, A. Dembna, and J. Tritt-goc, Translational dynamics of ionic liquid imidazolium cations at solid/liquid interface in gel polymer electrolyte, European Polymer Journal, vol.71, pp.210-220, 2015.
DOI : 10.1016/j.eurpolymj.2015.08.001

W. R. Carper, G. J. Mains, B. J. Piersma, S. L. Mansfield, and C. K. Larive, H Diffusion (DOSY) Studies of an Acidic Chloroaluminate Melt, The Journal of Physical Chemistry, vol.100, issue.12, pp.4724-472810, 1996.
DOI : 10.1021/jp953199o

N. Bloembergen, E. M. Purcell, and R. V. Pound, Relaxation Effects in Nuclear Magnetic Resonance Absorption, Physical Review, vol.32, issue.7, pp.679-712679, 1948.
DOI : 10.1109/JRPROC.1944.232049

C. Lopes, J. N. Padua, and A. A. , Nanostructural organization in ionic liquids. The journal of physical chemistry, pp.3330-3335, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00202031

D. R. Macfarlane, On the concept of ionicity in ionic liquids, Physical Chemistry Chemical Physics, vol.5, issue.25, pp.4962-496710, 2009.
DOI : 10.1103/PhysRevA.13.426

G. Annat, D. R. Macfarlane, and M. Forsyth, Transport properties in ionic liquids and ionic liquid mixtures: the challenges of NMR pulsed field gradient diffusion measurements. The journal of physical chemistry, pp.9018-902410, 2007.

E. O. Stejskal and J. Tanner, Spin Diffusion Measurements: Spin Echoes in the Presence of a Time???Dependent Field Gradient, The Journal of Chemical Physics, vol.42, issue.1, pp.288-292, 1965.
DOI : 10.1063/1.1730651