V. Bhavar, P. Kattire, V. Patil, and R. Singh, A review on powder bed fusion technology of metal additive manufacturing. The 4th International conference and exhibition on Additive Manufacturing Technologies-AM-2014, 2014.

L. Thijs, F. Verhaeghe, T. Craeghs, J. Van-humbeeck, and J. Kruth, A study of the microstructural evolution during selective laser melting of Ti???6Al???4V, Acta Materialia, vol.58, issue.9, pp.6-10, 2010.
DOI : 10.1016/j.actamat.2010.02.004

C. Qiu, N. J. Adkins, and M. M. Attallah, Microstructure and tensile properties of selectively laser-melted and of HIPed laser-melted Ti???6Al???4V, Materials Science and Engineering: A, vol.578, pp.230-239, 2013.
DOI : 10.1016/j.msea.2013.04.099

A. A. Zadpoor, Mechanics of additively manufactured biomaterials, Journal of the Mechanical Behavior of Biomedical Materials, vol.70, pp.1-6, 2017.
DOI : 10.1016/j.jmbbm.2017.03.018

J. N. Haigh, T. R. Dargaville, and P. D. Dalton, Additive manufacturing with polypropylene microfibers, Materials Science and Engineering: C, vol.77, pp.883-887, 2017.
DOI : 10.1016/j.msec.2017.03.286

R. Martukanitz, P. Michaleris, T. Palmer, T. Debroy, Z. Liu et al., Toward an integrated computational system for describing the additive manufacturing process for metallic materials, Additive Manufacturing, vol.1, issue.4, pp.1-4, 2014.
DOI : 10.1016/j.addma.2014.09.002

E. R. Denlinger, V. Jagdale, G. V. Srinivasan, T. El-wardany, and P. Michaleris, Thermal modelling of Inconel 718 processed with powder bed fusion and experimental validation using in situ measurements, pp.11-18, 2016.

M. Megahed, H. Mindt, N. N-'dri, H. Duan, and O. Desmaison, Metal additive-manufacturing process and residual stress modeling, Integrating Materials and Manufacturing Innovation, vol.70, issue.7, p.4, 2016.
DOI : 10.2514/6.2016-1658

URL : https://link.springer.com/content/pdf/10.1186%2Fs40192-016-0047-2.pdf

J. C. Steuben, A. P. Iliopoulos, and J. G. Michopoulos, Discrete element modeling of particle-based additive manufacturing processes, Computer Methods in Applied Mechanics and Engineering, vol.305, pp.305-2016
DOI : 10.1016/j.cma.2016.02.023

S. A. Khairallah and A. Anderson, Mesoscopic simulation model of selective laser melting of stainless steel powder, Journal of Materials Processing Technology, vol.214, issue.11, pp.2627-2636, 2014.
DOI : 10.1016/j.jmatprotec.2014.06.001

Q. Chen, G. Guillemot, C. Gandin, and M. Bellet, Three-dimensional finite element thermomechanical modeling of additive manufacturing by selective laser melting for ceramic materials, Additive Manufacturing, vol.16, pp.16-124, 2017.
DOI : 10.1016/j.addma.2017.02.005

URL : https://hal.archives-ouvertes.fr/hal-01552410

A. Foroozmehr, M. Badrossamay, E. Foroozmehr, and S. Golabi, Finite Element Simulation of Selective Laser Melting process considering Optical Penetration Depth of laser in powder bed, Materials & Design, vol.89, pp.255-263, 2016.
DOI : 10.1016/j.matdes.2015.10.002

D. Gu and B. , Finite element simulation and experimental investigation of residual stresses in selective laser melted Ti???Ni shape memory alloy, Computational Materials Science, vol.117, pp.221-232, 2016.
DOI : 10.1016/j.commatsci.2016.01.044

L. Lindgren, A. Lundbäck, M. Fisk, R. Pederson, and J. Andersson, Simulation of additive manufacturing using coupled constitutive and microstructure models, Additive Manufacturing 12, Part B, pp.144-158, 2016.

D. Riedlbauer, T. Scharowsky, R. F. Singer, P. Steinmann, C. Körner et al., Macroscopic simulation and experimental measurement of melt pool characteristics in selective electron beam melting of Ti-6Al-4V, The International Journal of Advanced Manufacturing Technology, vol.4, issue.1, pp.1309-1317, 2017.
DOI : 10.1007/s11740-009-0197-6

J. C. Steuben, A. P. Iliopoulos, and J. G. Michopoulos, Discrete element modeling of particle-based additive manufacturing processes, Computer Methods in Applied Mechanics and Engineering, vol.305, pp.305-2016
DOI : 10.1016/j.cma.2016.02.023

M. Shakoor, Three-dimensional numerical modeling of ductile fracture mechanisms at the microscale, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01626736

M. Shakoor, M. Bernacki, and P. Bouchard, A new body-fitted immersed volume method for the modeling of ductile fracture at the microscale: Analysis of void clusters and stress state effects on coalescence, Engineering Fracture Mechanics, vol.147, pp.398-417, 2015.
DOI : 10.1016/j.engfracmech.2015.06.057

URL : https://hal.archives-ouvertes.fr/hal-01181257

M. Shakoor, P. Bouchard, and M. Bernacki, An adaptive level-set method with enhanced volume conservation for simulations in multiphase domains, International Journal for Numerical Methods in Engineering, vol.5, issue.1, pp.555-576, 2017.
DOI : 10.1007/s12289-011-1030-2

URL : https://hal.archives-ouvertes.fr/hal-01504468

M. Putti and C. Cordes, Finite Element Approximation of the Diffusion Operator on Tetrahedra, SIAM Journal on Scientific Computing, vol.19, issue.4, pp.1154-1168, 1998.
DOI : 10.1137/S1064827595290711

V. D. Fachinotti and M. Bellet, Linear tetrahedral finite elements for thermal shock problems, International Journal of Numerical Methods for Heat & Fluid Flow, vol.16, issue.5, pp.590-601, 2006.
DOI : 10.1002/fld.351

URL : https://hal.archives-ouvertes.fr/hal-00576032

O. Jaouen, Modélisation tridimensionnelle par éléments finis pour l'analyse thermo-mécanique du refroidissement des pièces coulées, 1998.

P. Michaleris, Modeling metal deposition in heat transfer analyses of additive manufacturing processes, Finite Elements in Analysis and Design, vol.86, pp.51-60, 2014.
DOI : 10.1016/j.finel.2014.04.003

S. Sih and J. W. Barlow, The Prediction of the Emissivity and Thermal Conductivity of Powder Beds, Particulate Science and Technology, vol.63, issue.4
DOI : 10.1002/cite.330421408