Towards Compositional and Generative Tensor Optimizations

Abstract : Many numerical algorithms are naturally expressed as operations on tensors (i.e. multi-dimensional arrays). Hence, tensor expressions occur in a wide range of application domains , e.g. quantum chemistry and physics; big data analysis and machine learning; and computational fluid dynamics. Each domain, typically, has developed its own strategies for efficiently generating optimized code, supported by tools such as domain-specific languages, compilers, and libraries. However, strategies and tools are rarely portable between domains, and generic solutions typically act as " black boxes " that offer little control over code generation and optimization. As a consequence, there are application domains without adequate support for easily generating optimized code, e.g. computational fluid dynamics. In this paper we propose a generic and easily extensible intermediate language for expressing tensor computations and code transformations in a modular and generative fashion. Beyond being an intermediate language, our solution also offers meta-programming capabilities for experts in code optimization. While applications from the domain of computational fluid dynamics serve to illustrate our proposed solution, we believe that our general approach can help unify research in tensor optimizations and make solutions more portable between domains.
Type de document :
Communication dans un congrès
GPCE 2017 - 16th International Conference on Generative Programming: Concepts & Experience, Oct 2017, Vancouver, Canada. Volume 52 Issue 12, pp.Pages 169-175 2017, Proceedings of GPCE 2017 - 16th International Conference on Generative Programming: Concepts & Experience
Liste complète des métadonnées

Littérature citée [26 références]  Voir  Masquer  Télécharger

https://hal-mines-paristech.archives-ouvertes.fr/hal-01666797
Contributeur : Claire Medrala <>
Soumis le : lundi 18 décembre 2017 - 16:54:09
Dernière modification le : mardi 27 mars 2018 - 16:06:21

Fichier

A-671.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01666797, version 1

Collections

Citation

Adilla Susungi, Norman A. Rink, Jeronimo Castrillon, Immo Huismann, Albert Cohen, et al.. Towards Compositional and Generative Tensor Optimizations. GPCE 2017 - 16th International Conference on Generative Programming: Concepts & Experience, Oct 2017, Vancouver, Canada. Volume 52 Issue 12, pp.Pages 169-175 2017, Proceedings of GPCE 2017 - 16th International Conference on Generative Programming: Concepts & Experience. 〈hal-01666797〉

Partager

Métriques

Consultations de la notice

86

Téléchargements de fichiers

35