B. Cr?ciun, T. Kerekes, D. Séra, R. Teodorescu, and U. Annakkage, Power Ramp Limitation Capabilities of Large PV Power Plants With Active Power Reserves, IEEE Transactions on Sustainable Energy, vol.8, issue.2, pp.573-581, 2017.
DOI : 10.1109/TSTE.2016.2612121

V. Gevorgian and S. Booth, Review of PREPA technical requirements for interconnecting wind and solar generation, pp.0-57089, 2013.
DOI : 10.2172/1260328

C. Chow, B. Urquhart, and M. Lave, Intra-hour forecasting with a total sky imager at the UC San Diego solar energy testbed, Solar Energy, vol.85, issue.11, 2011.
DOI : 10.1016/j.solener.2011.08.025

H. Y. Cheng and C. C. Yu, Solar irradiance now-casting with ramp-down event prediction via enhanced cloud detection and tracking, 2016 IEEE International Conference on Multimedia and Expo (ICME)
DOI : 10.1109/ICME.2016.7552863

Y. Ding, X. Cheng, F. Cui, X. Zhu, and H. Zhou, Very-short term forecast of global horizontal irradiance based on ground-based sky imager and lifted condensation level calculation, 2014 China International Conference on Electricity Distribution (CICED)
DOI : 10.1109/CICED.2014.6991849

H. Yang, B. Kurtz, and D. Nguyen, Solar irradiance forecasting using a ground-based sky imager developed at UC San Diego, Solar Energy, vol.103, pp.502-524, 2014.
DOI : 10.1016/j.solener.2014.02.044

Y. Najera, D. R. Reed, and W. M. Grady, Image processing methods for predicting the time of cloud shadow arrivals to photovoltaic systems, 2011 37th IEEE Photovoltaic Specialists Conference, p.6185877, 2011.
DOI : 10.1109/PVSC.2011.6185877

S. Dev, F. M. Savoy, Y. H. Lee, and S. Winkler, Estimation of solar irradiance using ground-based whole sky imagers, 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)
DOI : 10.1109/IGARSS.2016.7730887

P. Suki? and G. ?tumberger, Intra-Minute Cloud Passing Forecasting Based on a Low Cost IoT Sensor???A Solution for Smoothing the Output Power of PV Power Plants, Sensors, vol.72, issue.5, p.1116, 2017.
DOI : 10.1175/1520-0450(2003)042<1421:CCBOAI>2.0.CO;2

P. Blanc, P. Massip, A. Kazantzidis, P. Tzoumanikas, P. Kuhn et al., Short-term forecasting of high resolution local DNI maps with multiple fish-eye cameras in stereoscopic mode, AIP conference proceedings (SolarPACES), accepted for publication, 2016.
DOI : 10.5194/amt-6-2403-2013

URL : https://hal.archives-ouvertes.fr/hal-01449128

A. Barnes, J. Balda, and A. Escobar?mejía, A Semi-Markov Model for Control of Energy Storage in Utility Grids and Microgrids With PV Generation, IEEE Transactions on Sustainable Energy, vol.6, issue.2, pp.546-556, 2015.
DOI : 10.1109/TSTE.2015.2393353

S. Hassan, A. Cipcigan, L. Jenkins, and N. , Optimal battery storage operation for PV systems with tariff incentives, Applied Energy, vol.203, pp.422-441, 2017.
DOI : 10.1016/j.apenergy.2017.06.043

S. West, D. Rowe, S. Sayeef, and A. Berry, Short-term irradiance forecasting using skycams: Motivation and development, Solar Energy, vol.110, pp.188-207, 2014.
DOI : 10.1016/j.solener.2014.08.038

S. Wilbert and E. Reuschenbach, Solar researchers demonstrate new solar irradiance nowcasting system in a 50?megawatts solar power plant, 2017.

V. Aga and C. Peruchena, PreFlexMS: Predictable Flexible Molten Salts Solar Power Plants, 58?60. https, 2017.
DOI : 10.21820/23987073.2017.3.58

D. Oberländer, C. Prahl, S. Wilbert, S. Müller, B. Stanicki et al., Cloud shadow maps from whole sky imagers and voxel carving

P. Kuhn, M. Wirtz, and N. Killius, Benchmarking three low?cost, low?maintenance cloud height measurement systems and ECMWF cloud heights, Sol Energy (under review), 2017.

P. Kuhn, M. Wirtz, and S. Wilbert, Field validation and benchmarking of a cloud shadow speed sensor, Sol Energy (under review), 2017.

A. Taravat, F. Frate, C. Cornaro, and S. Vergari, Neural Networks and Support Vector Machine Algorithms for Automatic Cloud Classification of Whole-Sky Ground-Based Images, IEEE Geoscience and Remote Sensing Letters, vol.12, issue.3, 2015.
DOI : 10.1109/LGRS.2014.2356616

M. Xia, W. Lu, Y. J. Ma, Y. Yao, W. Zheng et al., A hybrid method based on extreme learning machine and k-nearest neighbor for cloud classification of ground-based visible cloud image, Neurocomputing, vol.160, pp.238-249, 2015.
DOI : 10.1016/j.neucom.2015.02.022

A. Kazantzidis, P. Tzoumanikas, A. Bais, S. Fotopoulos, and G. Economou, Cloud detection and classification with the use of whole-sky ground-based images, Atmospheric Research, vol.113, 2012.
DOI : 10.1016/j.atmosres.2012.05.005

V. Jayadevan, J. Rodriguez, and A. Cronin, A New Contrast-Enhancing Feature for Cloud Detection in Ground-Based Sky Images, Journal of Atmospheric and Oceanic Technology, vol.32, issue.2, pp.209-219, 2015.
DOI : 10.1175/JTECH-D-14-00053.1

P. Ineichen and R. Perez, A new airmass independent formulation for the Linke turbidity coefficient, Solar Energy, vol.73, issue.3, 2002.
DOI : 10.1016/S0038-092X(02)00045-2

N. Hanrieder, M. Sengupta, Y. Xie, S. Wilbert, and R. Pitz?paal, Modeling beam attenuation in solar tower plants using common DNI measurements, Solar Energy, vol.129, pp.244-255, 2016.
DOI : 10.1016/j.solener.2016.01.051

S. Wilbert, S. Kleindiek, and B. Nouri, Uncertainty of rotating shadowband irradiometers and Si-pyranometers including the spectral irradiance error, AIP Conf Proc, vol.1734, issue.1, 2016.
DOI : 10.1016/S0038-092X(02)00045-2

J. Calbó, C. Long, J. González, J. Augustine, and A. Mccomiskey, The thin border between cloud and aerosol: sensitivity of several ground based observation techniques. Atmos Res. 196:248?260. https

J. Hay and D. Mckay, Estimating solar irradiance on inclined surfaces: a review and assessment of methodologies?5):203?240. https, Int J Sol Energy, vol.3, issue.4, 1985.

S. Yoshida, S. Ueno, N. Kataoka, H. Takakura, and T. Minemoto, Estimation of global tilted irradiance and output energy using meteorological data and performance of photovoltaic modules, Solar Energy, vol.93, 2013.
DOI : 10.1016/j.solener.2013.04.001

C. Gueymard and J. Ruiz?arias, Extensive worldwide validation and climate sensitivity analysis of direct irradiance predictions from 1-min global irradiance, Solar Energy, vol.128, pp.1-30, 2016.
DOI : 10.1016/j.solener.2015.10.010

P. Kuhn, S. Wilbert, and C. Prahl, Shadow camera system for the generation of solar irradiance maps):157?170. https, Sol Energy, vol.157, 2017.

P. Kuhn, S. Wilbert, C. Prahl, A. Kazantzidis, L. Ramírez et al., Validation of nowcasted spatial DNI maps, in DNICast, Deliverable 4.1Validation of nowcasted spatial DNI maps, available online

P. Kuhn, S. Wilbert, D. Schüler, C. Prahl, T. Haase et al., Validation of spatially resolved all sky imager derived DNI nowcasts, AIP conference proceedings (SolarPACES) 2017
DOI : 10.1016/j.solener.2013.09.016

URL : https://hal.archives-ouvertes.fr/hal-01553607

D. Bernecker, C. Riess, E. Angelopoulou, and J. Hornegger, Continuous short-term irradiance forecasts using sky images, Solar Energy, vol.110, pp.303-315, 2014.
DOI : 10.1016/j.solener.2014.09.005

T. Schmidt, J. Kalisch, E. Lorenz, and D. Heinemann, Evaluating the spatio?temporal performance of sky?imager?based solar irradiance analysis and forecasts, Atmos Chem Phys, vol.16, issue.5, 2016.

C. Fu and H. Cheng, Predicting solar irradiance with all-sky image features via regression, Solar Energy, vol.97, pp.537-550, 2013.
DOI : 10.1016/j.solener.2013.09.016

G. Wang, B. Kurtz, and J. Kleissl, Cloud base height from sky imager and cloud speed sensor, Solar Energy, vol.131, pp.208-221, 2016.
DOI : 10.1016/j.solener.2016.02.027

J. Marcos, L. Marroyo, E. Lorenzo, A. D. Izco, and E. , Power output fluctuations in large scale pv plants: One year observations with one second resolution and a derived analytic model, Progress in Photovoltaics: Research and Applications, vol.7, issue.1, pp.218-227, 2011.
DOI : 10.1109/60.124544

P. Kuhn, B. Nouri, and S. Wilbert, Validation of an all-sky imager-based nowcasting system for industrial PV plants, Progress in Photovoltaics: Research and Applications, vol.19, issue.2, pp.1-14, 2017.
DOI : 10.1002/pip.1016

URL : https://hal.archives-ouvertes.fr/hal-01667733