Harris Corner Detection on a NUMA Manycore

Abstract : Corner detection is a key kernel for many image processing procedures including pattern recognition and motion detection. The latter, for instance, mainly relies on the corner points for which spatial analyses are performed, typically on (probably live) videos or temporal flows of images. Thus, highly efficient corner detection is essential to meet the real-time requirement of associated applications. In this paper, we consider the corner detection algorithm proposed by Harris, whose the main work-flow is a composition of basic operators represented by their approximations using 3 × 3 matrices. The corresponding data access patterns follow a stencil model, which is known to require careful memory organization and management. Cache misses and other additional hindering factors with NUMA architectures need to be skillfully addressed in order to reach an efficient scalable implementation. In addition, with an increasingly wide vector registers, an efficient SIMD version should be designed and explicitly implemented. In this paper, we study a direct and explicit implementation of common and novel optimization strategies, and provide a NUMA-aware parallelization. Experimental results on a dual-socket INTEL Bradwell-E/EP show a noticeably good scalability performance.
Liste complète des métadonnées

Littérature citée [36 références]  Voir  Masquer  Télécharger

https://hal-mines-paristech.archives-ouvertes.fr/hal-01689709
Contributeur : Claire Medrala <>
Soumis le : lundi 22 janvier 2018 - 14:00:29
Dernière modification le : vendredi 22 mars 2019 - 01:38:16
Document(s) archivé(s) le : jeudi 24 mai 2018 - 07:38:27

Fichier

E-424.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01689709, version 1

Citation

Claude Tadonki, Olfa Haggui, Lionel Lacassagne. Harris Corner Detection on a NUMA Manycore. [Research Report] E-424, MINES ParisTech - PSL Research University; Centre de recherche en informatique - MINES ParisTech - PSL Research University; LIP6, Sorbonne Université, CNRS, UMR 7606. 2017. ⟨hal-01689709⟩

Partager

Métriques

Consultations de la notice

240

Téléchargements de fichiers

554