Skip to Main content Skip to Navigation
Conference papers

Optimisation de l'air conditionné par machine learning

Résumé : L'objectif de cet article est d'utiliser les données fournies par un réseau de capteurs via des méthodes de machine learning afin de contrôler les services d'un bâtiment automatiquement et intelligemment tout en tenant compte non seulement ses propriétés physiques, mais aussi de son utilisation réelle et du confort des occupants. La méthodologie et l’expérimentation sont d’abord exposées. Ensuite, les premiers résultats de l’implémentation d’une loi de commande prédictive au sein du bâtiment qui sert de test à l’Université de Berkeley sont présentés. Une baisse significative de la consommation d’énergie relative à l’usage de l’air conditionné est mesurée et son extrapolation à l’ensemble du bâtiment montre un potentiel d’efficacité réel
Document type :
Conference papers
Complete list of metadatas

https://hal-mines-paristech.archives-ouvertes.fr/hal-01689969
Contributor : Magalie Prudon <>
Submitted on : Monday, January 22, 2018 - 3:38:55 PM
Last modification on : Thursday, September 24, 2020 - 5:22:34 PM

Identifiers

  • HAL Id : hal-01689969, version 1

Citation

Gilles Guerassimoff, Ghassene Jebali, Therese Peffer. Optimisation de l'air conditionné par machine learning. JITH 2017, Journées Internationales de Thermique JITH 2017 Stockage et conversion de l’énergie, Oct 2017, Monastir, Tunisie. ⟨hal-01689969⟩

Share

Metrics

Record views

168