. Google, Google self-driving car project monthly report, " https://www.google.com/selfdrivingcar, Tech. Rep, 2016.

S. Lefèvre, D. Vasquez, and C. Laugier, A survey on motion prediction and risk assessment for intelligent vehicles, ROBOMECH Journal, vol.18, issue.10, 2014.
DOI : 10.1109/CVPR.2009.5206559

C. Tay, K. Mekhnacha, and C. Laugier, Probabilistic Vehicle Motion Modeling and Risk Estimation, Handbook of Intelligent Vehicles, pp.1479-1516
DOI : 10.1007/978-0-85729-085-4_57

URL : https://hal.archives-ouvertes.fr/hal-00779183

T. Streubel and K. H. Hoffmann, Prediction of driver intended path at intersections, 2014 IEEE Intelligent Vehicles Symposium Proceedings, pp.134-139, 2014.
DOI : 10.1109/IVS.2014.6856508

A. Carvalho, Y. Gao, S. Lefevre, and F. Borrelli, Stochastic predictive control of autonomous vehicles in uncertain environments, 12th International Symposium on Advanced Vehicle Control, 2014.

H. M. Mandalia and M. D. Salvucci, Using Support Vector Machines for Lane-Change Detection, Proceedings of the Human Factors and Ergonomics Society Annual Meeting, pp.1965-1969, 2005.
DOI : 10.1037/e577512012-017

URL : http://viscog.cs.drexel.edu/publications/HFES05-Mandalia.pdf

P. Kumar, M. Perrollaz, S. Lefevre, and C. Laugier, Learning-based approach for online lane change intention prediction, 2013 IEEE Intelligent Vehicles Symposium (IV), pp.797-802, 2013.
DOI : 10.1109/IVS.2013.6629564

URL : https://hal.archives-ouvertes.fr/hal-00821309

A. Houenou, P. Bonnifait, V. Cherfaoui, and W. Yao, Vehicle trajectory prediction based on motion model and maneuver recognition, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.4363-4369, 2013.
DOI : 10.1109/IROS.2013.6696982

URL : https://hal.archives-ouvertes.fr/hal-00881100

S. Yoon and D. Kum, The multilayer perceptron approach to lateral motion prediction of surrounding vehicles for autonomous vehicles, 2016 IEEE Intelligent Vehicles Symposium (IV), pp.1307-1312, 2016.
DOI : 10.1109/IVS.2016.7535559

A. Khosroshahi, E. Ohn-bar, and M. M. Trivedi, Surround vehicles trajectory analysis with recurrent neural networks, 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC), pp.2267-2272, 2016.
DOI : 10.1109/ITSC.2016.7795922

D. J. Phillips, T. A. Wheeler, and M. J. Kochenderfer, Generalizable intention prediction of human drivers at intersections, 2017 IEEE Intelligent Vehicles Symposium (IV), pp.1665-1670, 2017.
DOI : 10.1109/IVS.2017.7995948

B. Volz, H. Mielenz, R. Siegwart, and J. Nieto, Predicting pedestrian crossing using Quantile Regression forests, 2016 IEEE Intelligent Vehicles Symposium (IV), pp.426-432, 2016.
DOI : 10.1109/IVS.2016.7535421

R. S. Tomar and S. Verma, Safety of Lane Change Maneuver Through A Priori Prediction of Trajectory Using Neural Networks, Network Protocols and Algorithms, vol.4, issue.1, pp.4-21, 2012.
DOI : 10.5296/npa.v4i1.1240

Q. Liu, B. Lathrop, and V. Butakov, Vehicle lateral position prediction: A small step towards a comprehensive risk assessment system, 17th International IEEE Conference on Intelligent Transportation Systems (ITSC). IEEE, pp.667-672, 2014.

S. Zernetsch, S. Kohnen, M. Goldhammer, K. Doll, and B. Sick, Trajectory prediction of cyclists using a physical model and an artificial neural network, 2016 IEEE Intelligent Vehicles Symposium (IV), pp.833-838, 2016.
DOI : 10.1109/IVS.2016.7535484

Y. Duan, Y. Lv, and F. Wang, Travel time prediction with LSTM neural network, 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC). IEEE, pp.1053-1058, 2016.

A. Alahi, K. Goel, V. Ramanathan, A. Robicquet, L. Fei-fei et al., Social LSTM: Human Trajectory Prediction in Crowded Spaces, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.961-971, 2016.
DOI : 10.1109/CVPR.2016.110

URL : https://infoscience.epfl.ch/record/230265/files/CVPR16_N_LSTM.pdf

T. Fushiki, Estimation of prediction error by using K-fold cross-validation, Statistics and Computing, vol.35, issue.3, pp.137-146, 2011.
DOI : 10.1214/009053607000000514

Y. Gal and Z. Ghahramani, Dropout as a bayesian approximation: Representing model uncertainty in deep learning, Proceedings of The 33rd International Conference on Machine Learning, ser. Proceedings of Machine Learning Research, pp.20-22

S. Hochreiter and J. Schmidhuber, Long Short-Term Memory, Neural Computation, vol.4, issue.8, pp.1735-1780, 1997.
DOI : 10.1016/0893-6080(88)90007-X

F. A. Gers, J. Schmidhuber, and F. Cummins, Learning to Forget: Continual Prediction with LSTM, Neural Computation, vol.3, issue.10, pp.2451-2471, 2000.
DOI : 10.1162/neco.1990.2.4.490

A. Zyner, S. Worrall, J. Ward, and E. Nebot, Long short term memory for driver intent prediction, 2017 IEEE Intelligent Vehicles Symposium (IV), pp.1484-1489, 2017.
DOI : 10.1109/IVS.2017.7995919

C. Ding, W. Wang, X. Wang, and M. Baumann, A Neural Network Model for Driver???s Lane-Changing Trajectory Prediction in Urban Traffic Flow, Mathematical Problems in Engineering, vol.3, issue.5, 2013.
DOI : 10.1080/18756891.2010.9727732

J. Zheng, K. Suzuki, and M. Fujita, Predicting driver???s lane-changing decisions using a neural network model, Simulation Modelling Practice and Theory, vol.42, pp.73-83, 2014.
DOI : 10.1016/j.simpat.2013.12.007

J. Morton and T. A. Wheeler, Project Report Deep Learning of Spatial and Temporal Features for Automotive Prediction, pp.1-9, 2016.

M. Montanino and V. Punzo, Making NGSIM Data Usable for Studies on Traffic Flow Theory, Transportation Research Record: Journal of the Transportation Research Board, vol.2390, issue.2390, pp.99-111, 2013.
DOI : 10.3141/2390-11

A. Savitzky and M. J. Golay, Smoothing and Differentiation of Data by Simplified Least Squares Procedures., Analytical Chemistry, vol.36, issue.8, pp.1627-1639, 1964.
DOI : 10.1021/ac60214a047

J. Schlechtriemen, A. Wedel, J. Hillenbrand, G. Breuel, and K. Kuhnert, A lane change detection approach using feature ranking with maximized predictive power, 2014 IEEE Intelligent Vehicles Symposium Proceedings, pp.108-114
DOI : 10.1109/IVS.2014.6856491

J. Schlechtriemen, F. Wirthmueller, A. Wedel, G. Breuel, and K. D. Kuhnert, When will it change the lane? A probabilistic regression approach for rarely occurring events, 2015 IEEE Intelligent Vehicles Symposium (IV), pp.1373-1379, 2015.
DOI : 10.1109/IVS.2015.7225907

D. T. Field and J. P. Wann, Perceiving Time to Collision Activates the Sensorimotor Cortex, Current Biology, vol.15, issue.5, pp.453-458, 2005.
DOI : 10.1016/j.cub.2004.12.081

URL : https://doi.org/10.1016/j.cub.2004.12.081

F. Chollet, Keras, 2015.