The Invariant Extended Kalman Filter as a Stable Observer

Abstract : We analyze the convergence aspects of the invariant extended Kalman filter (IEKF), when the latter is used as a deterministic non-linear observer on Lie groups, for continuous-time systems with discrete observations. One of the main features of invariant observers for left-invariant systems on Lie groups is that the estimation error is autonomous. In this paper we first generalize this result by characterizing the (much broader) class of systems for which this property holds. Then, we leverage the result to prove for those systems the local stability of the IEKF around any trajectory, under the standard conditions of the linear case. One mobile robotics example and one inertial navigation example illustrate the interest of the approach. Simulations evidence the fact that the EKF is capable of diverging in some challenging situations, where the IEKF with identical tuning keeps converging.
Type de document :
Article dans une revue
IEEE Transactions on Automatic Control, Institute of Electrical and Electronics Engineers, 2017, 62 (4), pp.1797-1812. 〈10.1109/TAC.2016.2594085〉
Liste complète des métadonnées

Littérature citée [26 références]  Voir  Masquer  Télécharger

https://hal-mines-paristech.archives-ouvertes.fr/hal-01692380
Contributeur : Silvere Bonnabel <>
Soumis le : jeudi 25 janvier 2018 - 09:56:29
Dernière modification le : lundi 12 novembre 2018 - 10:56:15
Document(s) archivé(s) le : jeudi 24 mai 2018 - 21:27:05

Fichier

inv_ext_kalman_stable_observer...
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Silvere Bonnabel, Axel Barrau. The Invariant Extended Kalman Filter as a Stable Observer. IEEE Transactions on Automatic Control, Institute of Electrical and Electronics Engineers, 2017, 62 (4), pp.1797-1812. 〈10.1109/TAC.2016.2594085〉. 〈hal-01692380〉

Partager

Métriques

Consultations de la notice

120

Téléchargements de fichiers

102