An Innovative Nonlinear Filter for Radar Kinematic Estimation of Maneuvering Targets in 2D - Mines Paris Accéder directement au contenu
Communication Dans Un Congrès Année :

An Innovative Nonlinear Filter for Radar Kinematic Estimation of Maneuvering Targets in 2D

Résumé

In this paper we consider the problem of tracking a target in a 2D space whose model is based on a constant velocity assumption (up to a process noise) in the Frenet-Serret frame (or intrinsic coordinates). This model is particularly suited to straight lines and coordinated turn motions. Then, we adapt the Invariant Extended Kalman Filter (I-EKF), as in [1], a novel variant of the EKF on Lie groups, to suit this dynamical model. Numerical experiments inspired by real fighter trajectories confirm the validity of our approach.
Fichier principal
Vignette du fichier
IRS_17_abstract.pdf (262.58 Ko) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01692475 , version 1 (25-01-2018)

Identifiants

Citer

Marion Pilté, Silvère Bonnabel, Frédéric Barbaresco. An Innovative Nonlinear Filter for Radar Kinematic Estimation of Maneuvering Targets in 2D. 2017 18th International Radar Symposium (IRS), Jun 2017, Prague, Czech Republic. ⟨10.23919/IRS.2017.8008156⟩. ⟨hal-01692475⟩
212 Consultations
545 Téléchargements

Altmetric

Partager

Gmail Facebook Twitter LinkedIn More