R. Bellman and S. Dreyfus, Functional approximations and dynamic programming, Mathematical Tables and Other Aids to Computation, pp.247-251, 1959.
DOI : 10.2307/2002797

D. P. Bertsekas, Dynamic Programming and Optimal Control, Volume II: Approximate Dynamic Programming, Athena Scientific, 2012.

W. B. Powell, Approximate Dynamic Programming: Solving the Curses of Dimensionality, 2007.
DOI : 10.1002/9781118029176

P. A. Clarksonz and E. L. Mansfield, Symmetry reductions and exact solutions of a class of nonlinear heat equations, Physica D: Nonlinear Phenomena, vol.70, issue.3, pp.250-288, 1994.
DOI : 10.1016/0167-2789(94)90017-5

G. Bluman and S. Kumei, Symmetries and Differential Equations, ser. Applied Mathematical Sciences, 2013.

E. A. Emerson and A. P. Sistla, Symmetry and model checking, Formal Methods in System Design, pp.105-131, 1996.
DOI : 10.1007/bf00625970

URL : http://www.eecs.uic.edu/~sistla/symmetry1.ps

M. Kwiatkowska, G. Norman, and D. Parker, Symmetry Reduction for Probabilistic Model Checking, pp.234-248, 2006.
DOI : 10.1007/11817963_23

A. M. Bloch, P. S. Krishnaprasad, J. E. Marsden, and R. M. Murray, Nonholonomic mechanical systems with symmetry, Archive for Rational Mechanics and Analysis, vol.5, issue.Suppl. 2, pp.21-99, 1996.
DOI : 10.1007/978-1-4684-8318-5

URL : http://www.cds.caltech.edu/~marsden/bib/1996/06-BlKrMaMu1996/BlKrMaMu1996.pdf

F. Bullo and R. M. Murray, Tracking for fully actuated mechanical systems: a geometric framework, Automatica, vol.35, issue.1, pp.17-34, 1999.
DOI : 10.1016/S0005-1098(98)00119-8

A. Barrau and S. Bonnabel, Intrinsic Filtering on Lie Groups With Applications to Attitude Estimation, IEEE Transactions on Automatic Control, vol.60, issue.2, pp.436-449, 2015.
DOI : 10.1109/TAC.2014.2342911

A. Rahmani, M. Ji, M. Mesbahi, and M. Egerstedt, Controllability of Multi-Agent Systems from a Graph-Theoretic Perspective, SIAM Journal on Control and Optimization, vol.48, issue.1, pp.162-186, 2009.
DOI : 10.1137/060674909

M. Arcak, C. Meissen, and A. Packard, Symmetry Reduction, Networks of Dissipative Systems: Compositional Certification of Stability, Performance, and Safety, pp.55-62, 2016.
DOI : 10.1007/978-3-319-29928-0_7

URL : https://hal.archives-ouvertes.fr/hal-01695778

A. R. Ferreira, C. Meissen, M. Arcak, and A. Packard, Symmetry reduction for performance certification of interconnected systems, IEEE Transactions on Control of Networked Systems, 2017.

J. Grizzle and S. Marcus, Optimal control of systems possessing symmetries, IEEE Transactions on Automatic Control, vol.29, issue.11, pp.1037-1040, 1984.
DOI : 10.1109/TAC.1984.1103421

T. Ohsawa, Symmetry Reduction of Optimal Control Systems and Principal Connections, SIAM Journal on Control and Optimization, vol.51, issue.1, pp.96-120, 2013.
DOI : 10.1137/110835219

M. Zinkevich and T. Balch, Symmetry in Markov decision processes and its implications for single agent and multi agent learning, Proceedings of the 18th International Conference on Machine Learning, pp.632-640, 2001.

S. M. Narayanamurthy and B. Ravindran, Efficiently exploiting symmetries in real time dynamic programming, Proceedings of the 20th International Joint Conference on Aritifical Intelligence, ser. IJCAI'07, pp.2556-2561, 2007.

D. Ma, V. Gulani, N. Seiberlich, K. Liu, J. L. Sunshine et al., Magnetic resonance fingerprinting, Nature, vol.211, issue.7440, pp.187-192, 2013.
DOI : 10.2307/2532051

M. Davies, G. Puy, P. Vandergheynst, and Y. Wiaux, A Compressed Sensing Framework for Magnetic Resonance Fingerprinting, SIAM Journal on Imaging Sciences, vol.7, issue.4, pp.2623-2656, 2014.
DOI : 10.1137/130947246

D. P. Bertsekas, Dynamic Programming and Optimal Control, Athena Scientific, vol.I, 2005.

P. Martin, P. Rouchon, and J. Rudolph, Invariant tracking ESAIM: Control, Optimisation and Calculus of Variations, pp.1-13, 2004.

B. Jakubczyk, Symmetries of nonlinear control systems and their symbols, Canadian Math. Conf. Proceed, pp.183-198, 1998.

W. Respondek and I. A. , Nonlinearizable single-input control systems do not admit stationary symmetries, Systems & Control Letters, vol.46, issue.1, pp.1-16, 2002.
DOI : 10.1016/S0167-6911(01)00197-9

F. Bloch, Nuclear Induction, Physical Review, vol.56, issue.7-8, pp.460-474, 1946.
DOI : 10.1103/PhysRev.56.728

D. G. Nishimura, Principles of Magnetic Resonance Imaging, 2010.

J. Maidens, A. Packard, and M. Arcak, Parallel dynamic programming for optimal experiment design in nonlinear systems, 2016 IEEE 55th Conference on Decision and Control (CDC), pp.2894-2899, 2016.
DOI : 10.1109/CDC.2016.7798700

J. Maidens, P. E. Larson, and M. Arcak, Optimal experiment design for physiological parameter estimation using hyperpolarized carbon-13 magnetic resonance imaging, 2015 American Control Conference (ACC), pp.5770-5775, 2015.
DOI : 10.1109/ACC.2015.7172243

J. Maidens, J. W. Gordon, M. Arcak, and P. E. Larson, Optimizing Flip Angles for Metabolic Rate Estimation in Hyperpolarized Carbon-13 MRI, IEEE Transactions on Medical Imaging, vol.35, issue.11, pp.2403-2412, 2016.
DOI : 10.1109/TMI.2016.2574240

J. Maidens and M. Arcak, Semidefinite relaxations in optimal experiment design with application to substrate injection for hyperpolarized MRI, 2016 American Control Conference (ACC), pp.2023-2028, 2016.
DOI : 10.1109/ACC.2016.7525216