
HAL Id: hal-01695873
https://minesparis-psl.hal.science/hal-01695873v1

Preprint submitted on 29 Jan 2018 (v1), last revised 11 Apr 2018 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Paris-Lille-3D: a large and high-quality ground truth
urban point cloud dataset for automatic segmentation

and classification
Xavier Roynard, Jean-Emmanuel Deschaud, François Goulette

To cite this version:
Xavier Roynard, Jean-Emmanuel Deschaud, François Goulette. Paris-Lille-3D: a large and high-
quality ground truth urban point cloud dataset for automatic segmentation and classification. 2017.
�hal-01695873v1�

https://minesparis-psl.hal.science/hal-01695873v1
https://hal.archives-ouvertes.fr


Paris-Lille-3D: a large and high-quality ground
truth urban point cloud dataset for automatic

segmentation and classification

Xavier Roynard, Jean-Emmanuel Deschaud and François Goulette

{xavier.roynard ; jean-emmanuel.deschaud ; francois.goulette}@mines-paristech.fr

Mines ParisTech, PSL Research University, Centre for Robotics

December 4, 2017

Abstract

This paper introduces a new Urban Point Cloud Dataset for Auto-
matic Segmentation and Classification acquired by Mobile Laser Scan-
ning (MLS). We describe how the dataset is obtained from acquisi-
tion to post-processing and labeling. This dataset can be used to
learn classification algorithm, however, given that a great attention
has been paid to the split between the different objects, this dataset
can also be used to learn the segmentation. The dataset consists of
around 2km of MLS point cloud acquired in two cities. The number
of points and range of classes make us consider that it can be used
to train Deep-Learning methods. Besides we show some results of au-
tomatic segmentation and classification. The dataset is available at:
http://caor-mines-paristech.fr/fr/paris-lille-3d-dataset/.

Keywords
Urban Point Cloud, Dataset, Classification, Segmentation, Mobile Laser

Scanning

1 Introduction

With the development of segmentation and classification methods of 3D
point clouds by machine-learning, more and more data are needed in quantity
and quality (number of points, number of classes, quality of segmentation).

1

ar
X

iv
:1

71
2.

00
03

2v
1 

 [
cs

.L
G

] 
 3

0 
N

ov
 2

01
7

http://caor-mines-paristech.fr/fr/paris-lille-3d-dataset/


Figure 1: Part of our dataset (top: reflectance from blue(0) to red(255),
middle: object label (different color for each), bottom: object class)

2



There are always more datasets of classification and segmentation of im-
ages, visual and LiDAR odometry or SLAM, detection of vehicles and pedes-
trians on videos, stereo-vision, optical flow, etc. But it is still difficult to find
datasets of segmented and classified urban 3D point clouds. The only com-
parable datasets are the one described in section Available Datasets. Each
of them have their advantages and disadvantages, but we estimate that none
has the quality and quantity required for new issues such as deep learning
methods.

In section Our Dataset: Paris-Lille-3D, we present a new urban dataset
that we have created, where the objects are sufficiently segmented that the
task of segmentation can be learned very precisely. Our dataset can be
found at the following address: http://caor-mines-paristech.fr/fr/paris-lille-
3d-dataset/.

In section Results of automatic segmentation and classification, we give
some results of automatic segmentation and classification on our dataset.

2 Available Datasets

A dataset may have two main purposes:
� to test a method to know its performance or to validate it,
� to train a method based on learning.

In the case of learning, one can learn different tasks, the most common
being classification (for example, for an image, it is giving the class of the
principal object visible). Another task may be to segment the data into its
relevant parts (for the images it is grouping all the pixels that belong to
the same object). There are multiple other tasks that can be learned, from
image analysis to translation in natural language processing, for a survey see
[FMH+15].

There is a bunch of existing datasets in many fields. Each dataset has
different types of data, in type (image, sound, text, point clouds, graphs),
quantity (from hundreds to billion of samples), quality, number of classes
(From tens to thousands), and tasks to learn. Amongst the most famous
are:

� image classification and segmentation datasets: ImageNet [DDS+09],
MS COCO [LMB+14],

� stereovision dataset for depth map estimation: Middlebury Stereo
Datasets [SHK+14],

� video dataset: Youtube-8M [AEHKL+16],
� odometry, stereovision, optical flow and 3D object detection dataset:
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KITTI [GLU12],
� SLAM dataset: Ford Campus Vision and Lidar Data Set [PME11],
� long-term localization datasets: the Oxford Robotcar Dataset [MPLN17]
and the NCLT Dataset [CBUE16],

� urban street image segmentation dataset: The Cityscapes Dataset
[COR+16].

Closer to our field of research are aerial LiDAR (ALS) datasets as 3D Se-
mantic Labeling Contest [NRS14].

The data we are interested in are urban 3D point clouds. There are
mainly two methods that allow to acquire these data in quality sufficient for
us:

� Mobile Laser Scanning (MLS), with a LiDAR mounted on a ground
vehicle or a drone. To register the clouds, an accurate 6D-pose of the
vehicule must be known.

� Static LiDAR, the LiDAR must be moved between each acquisition
and clouds must be registered.

The ALS does not make it possible to obtain a sufficient density of points
because of the distance and the angle of acquisition.

There are already some segmented and classified urban 3D point cloud
datasets. However these datasets are very heterogeneous and each have fea-
tures that can be seen as defects. In the 4 next sub-sections, we make a
comparison of the existing datasets and identify their strengths and weak-
nesses for automatic classification and segmentation. Table 1 presents a
quantitative comparison of these datasets with ours.

2.1 Oakland 3-D Point Cloud Dataset [MBVH09]

This dataset was acquiered by a MLS system mounted with a side looking
Sick monofiber LiDAR. Since it is a mono-fiber LiDAR, it has the disadvan-
tage of hitting the objects from a single point of view, so there are many
occlusions. In addition it is much less dense than other datasets because of
the low acquisition rate of the LiDAR (see figure 2). Moreover this dataset
contains very few classes.
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Name Lidar type Length
Number of

points
Number of
classes

Oakland
MLS

mono-fiber 1510m 1.61M 5

Semantic3D static LiDAR – 1660M 8

Paris-rue-
Madame

MLS
multi-fiber 160m 20M 17

IQumulus
MLS

mono-fiber 210m 12M 22

Paris-Lille-
3D

MLS
multi-fiber 1940m 143.1M 50

Table 1: Comparison of urban 3D point cloud datasets.

Figure 2: Exemple of cloud in Oakland dataset. Low density, few classes,
big shadows behind trees(due to monofiber LiDAR).

2.2 Semantic3D [HWS16]

This dataset was acquired by static laser scanners. It is therefore much more
precise and dense than a dataset acquired by MLS, but it has disadvantages
inherent to static LiDARs (see figure 3):

� The density of points varies considerably depending on the distance to
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the sensor.
� There are occlusions due to the fact that sensors do not turn around
the objects. Even by registering several clouds acquired from different
viewpoints, there are still a lot of occlusions.

� The acquisition time is much more important than by MLS, which
prevents to obtain very miscellaneous scenes.

Figure 3: Exemple of cloud in Semantic3D dataset (3 clouds registered).
Occlusions, density depends on the distance to the LiDAR.

2.3 Paris-rue-Madame Database [SMGD14]

This dataset was acquired by an earlier version of our MLS system (see
section 3.1). This dataset was segmented and annotated semi-automatically,
first by a mathematical morphology method on elevation images [SMGD14]
and then refined by hand. Some segmentation inaccuracies at the edges
of objects remain (see figure 4), in particular the bottom of the objects is
annotated as belonging to the ground. Moerover, the system as well as the
point cloud processing pipeline have been greatly improved. We can now
generate clouds much less noisy.
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Figure 4: Exemple of cloud in Rue-Madame dataset. Ground truth mistakes:
can be very noisy (top), parts of cars are seen as road (bottom).

2.4 IQmulus & TerraMobilita Contest [VBS+15]

This dataset was acquired by a MLS system mounted with a monofiber Riegl
LMS-Q120i LiDAR. This LiDAR has the advantage of being more accurate
than a multi-fiber LiDAR such as the Velodyne HDL-32E, but it is also more
expensive. Moreover, since it is mono-fiber, it has the disadvantage of hitting
the objects from a single point of view, so there are many occlusions.

For the annotation, the scan lines of the LiDAR were concatenated one
above the other to form 2D images. The RGB values of the pixels are ob-
tained by recalibrating the scan lines with respect to RGB cameras mounted
on the vehicle. Then images are segmented and annotated by hand. This
method has the advantage of being easy to put into production, which al-
lowed the IGN to annotate a large dataset. However, inaccuracies in the
registration of clouds with respect to RGB images generate badly annotated
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points (see figure 5).

Figure 5: Exemple of cloud in iQumulus/TerraMobilita dataset. As a
monofiber LiDAR is used, there are shadows behind objects. Moreover there
are ground truth mistakes around shadows behind cars.

3 Our Dataset: Paris-Lille-3D

3.1 Acquisition

All point clouds used in our dataset were acquired with the MLS prototype
of the center for robotics of Mines ParisTech: L3D2 [GNA+06] (as seen in
figure 6). It is a Citroën Jumper equipped with a GPS (Novatel FlexPak 6),
an IMU (Ixsea PHINS in LANDINS mode) and a Velodyne HDL-32E LiDAR
mounted at the rear of the truck with an angle of 30 degrees between the
axis of rotation and the horizontal.
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Figure 6: MLS prototype: L3D2

For localization, we use a dual-phase L1/L2 RTK-GPS at 1Hz with a
fixed base provided by the IGN RGP1 (Permanent GNSS Network). RGP
bases are: SMNE for Paris dataset and LMCU for Lille dataset. The IMU
sends data at 100Hz. Data from the LiDAR and IMU are synchronised
thanks to PPS signal from the GPS.

In post-process, we retrieve data from RGP fixed base, and we gener-
ate the trajectory with the Inertial Explorer2 software. The method used
is Tightly Coupled GPS-RTK/INS Kalman Smoothing EKF. We obtain a
trajectory in WGS84 system at 100Hz, that we convert to Lambert RGF93.

Then, as each point has its own timestamp, we linearly interpolate the
trajectory. Moreover we only keep points measured at a distance less than
20m. Finally we build clouds with for each point (x, y, z, xorigin, yorigin, zorigin, t, i),
where i is the intensity of the LiDAR return.

We do not apply any method of SLAM, cloud registration or loop closure.
All trajectories are built with Inertial Explorer.

3.2 Description of point clouds

The Dataset consists of three parts:
1http://rgp.ign.fr/
2https://www.novatel.com/products/software/inertial-explorer/
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� 2 parts in Lille: https://www.google.fr/maps/dir/50.6814502,3.
1584078/50.6711533,3.1445005/@50.675791,3.1498151,15.5z/data=
!4m2!4m1!3e0?hl=fr,

� 1 part in Paris: https://www.google.fr/maps/dir/48.844511,2.3327717/
48.8487076,2.3327246/@48.8465771,2.330363,17.31z/data=!4m2!
4m1!3e0?hl=en

For the sake of precision, an offset has been substracted in the plane (x,y)
to all the points so that they hold in float (32 bits). Data are distributed
as in table 2

Section Length

Number
of

points RGF93 Offset

Lille1 1150m 71.3M (711164.0m, 7064875.0m)
Lille2 340m 26.8M (711164.0m, 7064875.0m)
Paris 450m 45.7M (650976.0m, 6861466.0m)

Total 1940m 143.1M –

Table 2: Description of the three parts of the dataset.
The clouds have high density with between 1000 and 2000 points per square

meters on the ground, but there are some anisotropic patterns due to the multi-
beam LiDAR sensor as seen in figure 7.

Figure 7: Anisotropic pattern on the ground (color of points is the re-
flectance)
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3.3 Description of segmented and classified data
The clouds obtained were segmented and classified by hand using CloudCompare3
software. Some illustrations of the segmented and classified data are shown in figure
1.

We chose to re-use the class tree of iQmulus/Terramobilita benchmark, in which
we only change a few classes and add classes relevant to our dataset. It can
be found at url: http://data.ign.fr/benchmarks/UrbanAnalysis/download/
classes.xml For a distribution of number of points by classes, see table 3. Classes
added:

� bicycle rack (id = 302021200)
� statue (id = 302021300)
� distribution box (id = 302040600)
� lighting console (id = 302040700)
� windmill (id = 302040800)

We also change the way vehicles are seen. More precisely, for each class of vehicle, we
distinguish sub-classes depending on whether they are parked, stopped (on the road)
or moving. And Velib terminal is changed to bicycle terminal (id = 302021100)
which is more generic.

Except the few classes mentionned above, this class tree appears to be suffi-
ciently complete for classes encountered in our dataset. The XML file describing
this tree is named classes.xml and is provided with the dataset. We also provide
three ASCII-files (.txt) containing annotations for particular samples. Each line of
these files contains:

sample_id, class_id, class_name,
annotation1, annotation2, ...

The most common annotations are:
� "several", for example when trees are interlaced and can not be delimited
precisely by hand,

� "overturned", for trash cans laid on their side.

3http://www.danielgm.net/cc/
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Class Number of samples (of points)

Lille1 Lille2 Paris Total

unclassified 1 (54.88k) 1 (16.47k) 1 (60.79k) 3 (132.1k)
other 16 (70.15k) 11 (14.10k) 11 (30.82k) 38 (115.1k)
road 1 (34.80M) 1 (11.82M) 1 (19.68M) 3 (66.30M)

sidewalk 18 (8.566M) 8 (4.97M) 5 (4.6M) 31 (16.67M)
island 7 (458.8k) 0 (0) 9 (82.46k) 16 (541.2k)

vegetation 32 (562.2k) 22 (512.4k) 6 (157.1k) 60 (1.232M)
building 34 (18.2M) 8 (7.934M) 5 (9.431M) 47 (35.39M)
post 9 (13.51k) 0 (0) 0 (0) 9 (13.51k)

bollard 122 (34.80k) 64 (7.982k) 84 (28.33k) 270 (71.10k)
floor lamp 72 (232.9k) 13 (23.69k) 21 (113.2k) 106 (369.7k)
traffic light 14 (25.82k) 11 (27.41k) 16 (80.76k) 41 (133.10k)
traffic sign 82 (113.6k) 39 (69.89k) 17 (30.75k) 138 (214.3k)
signboard 20 (68.34k) 12 (43.14k) 3 (13.41k) 35 (124.9k)
mailbox 0 (0) 0 (0) 1 (4.739k) 1 (4.739k)
trash can 11 (14.72k) 6 (17.43k) 22 (30.35k) 39 (62.50k)
meter 0 (0) 0 (0) 2 (2.840k) 2 (2.840k)

bicycle terminal 10 (1.736k) 0 (0) 13 (6.451k) 23 (8.187k)
bicycle rack 8 (774) 0 (0) 14 (8.665k) 22 (9.439k)

statue 2 (4.158k) 0 (0) 0 (0) 2 (4.158k)
barrier 45 (83.94k) 5 (9.286k) 7 (56.10k) 57 (149.3k)
roasting 6 (831.0k) 1 (20.82k) 4 (1.677M) 11 (2.529M)
wire 34 (14.18k) 8 (9.325k) 0 (0) 42 (23.51k)

low wall 58 (840.2k) 2 (26.99k) 9 (951.4k) 69 (1.819M)
shelter 0 (0) 0 (0) 3 (83.45k) 3 (83.45k)
bench 5 (2.911k) 1 (364) 2 (1.391k) 8 (4.666k)

distribution box 19 (50.28k) 8 (14.89k) 3 (53.4k) 30 (118.2k)
lighting console 78 (7.251k) 60 (9.731k) 9 (4.393k) 147 (21.38k)

windmill 1 (10.17k) 0 (0) 0 (0) 1 (10.17k)
pedestrian 17 (24.81k) 7 (11.60k) 61 (150.2k) 85 (186.6k)

parked bicycle 15 (9.74k) 0 (0) 33 (81.67k) 48 (90.75k)
mobile scooter 0 (0) 0 (0) 1 (131) 1 (131)
parked scooter 0 (0) 0 (0) 31 (169.1k) 31 (169.1k)

mobile motorbike 0 (0) 0 (0) 1 (1.613k) 1 (1.613k)
parked motorbike 2 (2.428k) 0 (0) 4 (14.37k) 6 (16.79k)

mobile car 21 (175.0k) 4 (40.96k) 5 (66.35k) 30 (282.3k)
stopped car 0 (0) 1 (28.27k) 1 (9.375k) 2 (37.64k)
parked car 182 (2.266M) 47 (853.7k) 65 (1.610M) 294 (4.730M)
mobile van 3 (97.27k) 1 (41.6k) 0 (0) 4 (138.3k)
parked van 5 (84.75k) 5 (85.20k) 9 (357.6k) 19 (527.6k)

stopped truck 0 (0) 0 (0) 1 (235.7k) 1 (235.7k)
parked truck 2 (40.32k) 0 (0) 1 (53.44k) 3 (93.76k)
stopped bus 0 (0) 0 (0) 1 (78.41k) 1 (78.41k)
parked bus 1 (9.623k) 0 (0) 0 (0) 1 (9.623k)

table 0 (0) 0 (0) 2 (576) 2 (576)
chair 0 (0) 0 (0) 8 (4.842k) 8 (4.842k)

trash can 138 (148.8k) 80 (115.9k) 0 (0) 218 (264.7k)
waste 5 (2.307k) 0 (0) 0 (0) 5 (2.307k)
natural 149 (1.233M) 47 (396.9k) 36 (1.610M) 232 (3.240M)
tree 72 (2.310M) 23 (565.10k) 101 (4.755M) 196 (7.631M)

potted plant 32 (72.80k) 5 (26.96k) 0 (0) 37 (99.76k)

Total 1349 (71.36M) 501 (26.84M) 629 (45.80M) 2479 (143.10M)

Table 3: Number of samples/points for each class (k for thousand and M for
million). Trash cans appear twice, the first time is for only fixed trash can.

3.4 Description of files
Each part of the dataset is in a separate PLY-file, a summary of each file can be
found in table 4. Each point of PLY-files has 10 attributes:

� x, y, z (float) : the position of the point,
� x_origin, y_origin, z_origin (float) : the position of the LiDAR,
� GPS_time (double) : the moment when the point was acquired,
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� reflectance (uint8) : the intensity of laser return,
� label (uint32) : the label of the object to which the point belongs,
� class (uint32) : the class of the object to which the point belongs.

Section Length

Number
of

points

Number
of

objects

Number
of

classes

Lille1 1150m 71.3M 1349 39
Lille2 340m 26.8M 501 29
Paris 450m 45.7M 629 41

Total 1940m 143.1M 2479 50

Table 4: Overview of our dataset.

4 Results of automatic segmentation and classifica-
tion

In this section, we evaluate an automatic segmentation and classification method
[RDG16] on our dataset. The processing pipeline is:

� extraction of the groung by region growing on an elevation map,
� segmentation of objects by connectivity of the remaining point cloud,
� computation of descriptors on each object (some simple geometric descrip-
tors inspired by [SM14] and some 3D descriptor of the litterature as CVFH
[RBTH10], GRSD [MPB+10] and ESF [OFCD01]),

� classification of the objects thanks to Random Forest.

4.1 Improvements of [RDG16]
Two improvements are proposed to increase the robustness of this method: first on
the segmentation by new extraction of the ground (using better seed for the region
growing), then on the classification with new descriptors (to take the context of
objects into account).

4.1.1 Ground Extraction

In [RDG16], the seed for region growing is found by computing an histogramm in
z on the whole cloud, which is not robust in case the road is sloping. As we know
the exact position of the LiDAR sensor with respect to the ground (2.71m above
ground), we can extract the points that are just below the sensor in a cylinder
parameterized by:

√
(x− xorigin)2 + (y − yorigin)2 ≤ 1 (1)

|zorigin − z − 2.71| ≤ 0.3 (2)
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Points lying in this cylinder are then taken as seeds for the region growing.

4.1.2 Features for Classification

It was observed that some objects (such as cars) were detected way above the
ground. We propose to solve this problem by adding a contextual descriptor which
gives the altitude of the object with respect to the ground detected in the previous
step.

In a first step we calculate an image of elevation of the ground, for example with
a resolution 10cm×10cm. Then empty pixels are filled with elevation of the closest
non-empty pixel. And the image is smoothed to avoid segmentation artefacts (for
exemple where the ground meets the foot of the buildings).

Then for each object, the barycenter is projected onto this elevation image of
the ground, which gives us the elevation of the ground under this object: zground. If
zmin is the minimum elevation of the object, the descriptor added is: zmin−zground.

4.2 Evaluation:Segmentation

Figure 8: Exemple of cloud segmented by our method (each object has a
different color).

Our segmentation method is very basic, indeed it makes very strong a priori on
the way to distinguish objects from each other. Two objects are different if they
are in different connected component of the point cloud from which the ground has
been removed. This explains some problems (see figure 9) like two cars too close
one from another segmented as a single object, or buildings just linked by a cable.
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Figure 9: Comparison between clouds segmented automatically by our
method(bottom) and by hand(tom). Each object has a different color. Two
cars too close one from another are segmented as a single object. The bottom
part of each object is segmented as part of the ground. A trash can placed
against the facade is seen as a part of the facade.

To evaluate detection of objects, we use the same metric as used in iQmu-
lus/TerraMobilita contest [VBS+15].

For an object of the ground truth (represented by the subset SGT ) and an object
resulting from our segmentation method (SSR), we estimate that they match if the
following conditions are respected:

|SGT |
|SGT ∪ SSR|

> m and
|SSR|

|SGT ∪ SSR|
> m
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Then detection precision and recall are computed by the following formulas:

precision(m) =
number of detected objects matched

number of detected objects

recall(m) =
number of detected objects matched

number of ground truth objects

F1(m) =
2 precision(m) · recall(m)

precision(m) + recall(m)

We evaluate our results with m = 0.5 which is the minimal value that ensures
that a Ground Truth object matches at most one object segmented by our method
(see table 5).

Dataset Precision Recall F1

Lille1 70.24% 38.55% 49.78%
Lille2 59.09% 31.71% 41.27%
Paris 54.24% 28.46% 37.33%

Table 5: Precision and Recall of object detection for m = 0.5.

It is believed that methods that learn segmentation will yield much better
results.

4.3 Evaluation:Classification

Figure 10: Exemple of cloud classified by our method (each class has a
different color).

In this section we only evaluate the classification method assuming good seg-
mentation. To do this, we take the set of objects of the dataset that are randomly
divided into a training set (80%) and a test set (20%). We use only a few coarser
classes than described in table 3 to evaluate our classification algorithm, see table 6
for a distribution of samples per class. In addition, we add a coarse_classes.xml
file to the dataset that adds a coarse field to each class.

16



Class Number of samples (of points)

Lille1 Lille2 Paris Total

buildings 34 (18.2M) 8 (7.934M) 5 (9.431M) 47 (35.39M)
poles 177 (385.9k) 63 (120.10k) 54 (224.7k) 294 (731.5k)

bollards 122 (34.80k) 64 (7.982k) 84 (28.33k) 270 (71.10k)
trash cans 149 (163.5k) 86 (133.3k) 22 (30.35k) 257 (327.2k)
barriers 109 (1.755M) 8 (57.9k) 20 (2.685M) 137 (4.497M)

pedestrians 17 (24.81k) 7 (11.60k) 61 (150.2k) 85 (186.6k)
cars 211 (2.623M) 58 (1.49M) 80 (2.43M) 349 (5.715M)

natural 221 (3.543M) 70 (962.8k) 137 (6.365M) 428 (10.87M)

Total 1040 (26.55M) 364 (10.28M) 463 (20.96M) 1867 (57.79M)

Table 6: Number of samples/points for each coarse class used for classifica-
tion evaluation.

Even with these coarse classes, there are a few samples in some of them. Then
precision and recall numbers in table 7 should be taken with caution. Metrics used
to evaluate performance are the following:

P =
TP

TP + FP

R =
TP

TP + FN
(3)

F1 =
2TP

2TP + FP + FN

MCC =
TP ·TN − FP ·FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)

Moreover, it can be noted that the best results are obtained with the combi-
nation of descriptors: Geometric and GRSD, which are the descriptors composed
of the least number of variables. This can be explained by the few samples of the
dataset and therefore adding a large number of features does not provide more
relevant information. Then this dataset is more appropriate for the evaluation of
per-point classification methods.

Descriptors OOB Accuracy Precision Recall F1 MCC

Geom 89.22% 98.08% 89.48% 85.13% 87.23% 85.62%
CVFH 70.32% 94.68% 67.23% 60.82% 63.85% 60.14%
GRSD 70.02% 94.58% 64.42% 61.39% 62.82% 58.78%
ESF 74.98% 95.47% 70.87% 66.99% 68.85% 65.71%

Geom+CVFH 81.94% 96.76% 79.90% 74.76% 77.21% 74.65%
Geom+GRSD 89.37% 98.07% 90.33% 83.73% 86.89% 84.78%
Geom+ESF 82.45% 96.81% 81.25% 77.80% 79.46% 77.30%

CVFH+GRSD 75.98% 95.67% 74.62% 68.93% 71.62% 68.33%
CVFH+ESF 76.59% 95.76% 74.56% 68.81% 71.54% 68.38%
GRSD+ESF 79.13% 96.19% 77.42% 73.98% 75.63% 73.02%

Geom+CVFH+GRSD 83.00% 96.98% 81.54% 76.03% 78.64% 76.10%
Geom+CVFH+ESF 82.23% 96.76% 81.75% 76.89% 79.22% 76.88%
Geom+GRSD+ESF 83.90% 97.05% 82.26% 79.65% 80.91% 78.90%
CVFH+GRSD+ESF 79.25% 96.27% 79.04% 74.04% 76.43% 73.75%

Geom+CVFH+GRSD+ESF 83.41% 97.00% 82.91% 79.07% 80.92% 78.78%
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Table 7: Classification performance for each combination of descriptors (the
OOB score is given by Random-Forest during training).

It can be concluded that it is not necessary to calculate all the descriptors to
obtain the best classification results. It is possible to gain in computation time by
calculating only the geometric descriptors and GRSD. And for applications where
time is critical, we can even calculate only the geometric descriptors (which also
avoids having to calculate the normals).

5 Conclusion
We presented a dataset of urban 3D point cloud for automatic segmentation and
classification. This dataset contains 140 million points on 2km in two different
cities. The objects were segmented by hand and a class was associated with each
one among 44 classes.

We hope that this dataset will help to train and evaluate methods as deep-
learning, which are very demanding in terms of quantity of points.

In addition, we have tested a first method of segmentation and automatic clas-
sification from [RDG16] to which we have made some improvements for robustness.
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