Paris-Lille-3D: a large and high-quality ground truth urban point cloud dataset for automatic segmentation and classification

Abstract : This paper introduces a new Urban Point Cloud Dataset for Automatic Segmentation and Classification acquired by Mobile Laser Scanning (MLS). We describe how the dataset is obtained from acquisition to post-processing and labeling. This dataset can be used to learn classification algorithm, however, given that a great attention has been paid to the split between the different objects, this dataset can also be used to learn the segmentation. The dataset consists of around 2km of MLS point cloud acquired in two cities. The number of points and range of classes make us consider that it can be used to train Deep-Learning methods. Besides we show some results of automatic segmentation and classification. The dataset is available at: http://caor-mines-paristech.fr/fr/paris-lille-3d-dataset/.
Type de document :
Pré-publication, Document de travail
preprint. 2017
Liste complète des métadonnées

Littérature citée [26 références]  Voir  Masquer  Télécharger

https://hal-mines-paristech.archives-ouvertes.fr/hal-01695873
Contributeur : Xavier Roynard <>
Soumis le : mercredi 11 avril 2018 - 10:31:59
Dernière modification le : vendredi 13 avril 2018 - 01:37:08

Fichier

dataset_Roynard_2017.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01695873, version 2
  • ARXIV : 1712.00032

Collections

Citation

Xavier Roynard, Jean-Emmanuel Deschaud, François Goulette. Paris-Lille-3D: a large and high-quality ground truth urban point cloud dataset for automatic segmentation and classification. preprint. 2017. 〈hal-01695873v2〉

Partager

Métriques

Consultations de la notice

29

Téléchargements de fichiers

6