Dual Query: Practical Private Query Release for High Dimensional Data

Abstract : We present a practical, differentially private algorithm for answering a large number of queries on high dimensional datasets. Like all algorithms for this task, ours necessarily has worst-case complexity exponential in the dimension of the data. However, our algorithm packages the computationally hard step into a concisely defined integer program, which can be solved non-privately using standard solvers. We prove accuracy and privacy theorems for our algorithm, and then demonstrate experimentally that our algorithm performs well in practice. For example , our algorithm can efficiently and accurately answer millions of queries on the Netflix dataset, which has over 17,000 attributes; this is an improvement on the state of the art by multiple orders of magnitude.
Type de document :
Article dans une revue
Liste complète des métadonnées

Littérature citée [34 références]  Voir  Masquer  Télécharger

https://hal-mines-paristech.archives-ouvertes.fr/hal-01702734
Contributeur : Claire Medrala <>
Soumis le : lundi 5 mars 2018 - 14:05:55
Dernière modification le : mardi 13 août 2019 - 11:40:13

Identifiants

  • HAL Id : hal-01702734, version 1

Citation

Marco Gaboardi, Emilio Jesús Gallego Arias, Justin Hsu, Aaron Roth, Zhiwei Wu. Dual Query: Practical Private Query Release for High Dimensional Data. Journal of Privacy and Confidentiality, 2016, 7 (Issue 2, Article N°4), pp.53 - 77. ⟨hal-01702734⟩

Partager

Métriques

Consultations de la notice

130