Linear Friction Welding of Aeronautical alloys Modeling and Numerical Simulation
Antoine Potet, Katia Mocellin, Lionel Fourment

To cite this version:
Antoine Potet, Katia Mocellin, Lionel Fourment. Linear Friction Welding of Aeronautical alloys Modeling and Numerical Simulation. 4th International Linear Friction Welding Symposium, Mar 2017, Cambridge, United Kingdom. hal-01712005

HAL Id: hal-01712005
https://hal-mines-paristech.archives-ouvertes.fr/hal-01712005
Submitted on 19 Feb 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Linear Friction Welding of Aeronautical alloys
Modeling and Numerical Simulation

A. Potet*, K. Mocellin, L. Fournier
*antoine.potet@mines-paristech.fr
MINES ParisTech, PSL Research University, CEMEF, CNRS UMR 7635

Thermo-mechanical coupled process

\[\rho \frac{dv}{dt} = -\nabla p + \rho_s \]
\[\rho C_\text{p} \frac{dT}{dt} = \nabla . (k \nabla T) + \dot{q} \]

full 3D, entire process simulation

Forge* solver
- (metal forming framework)
- Implicit formulation
- Updated lagrangian
- (v-p) based formulation
- Remeshing

Considered material
Ti6242, TA6V, Ti17, Inconel718

Material model
JMatPro based
- elasto-viscoplastic material

Friction model
Friction model is critical but unknown

Proposed solution: inverse analysis from recorded real-process data

Results presented here are based on a Coulomb model

\[\tau = \mu \Delta \sigma_n \]

Friction Coulomb coefficient influence

On shortening

LFW simulation

2 bodies model
- friction/contact model
- Sensitivity to contact algorithm
- New surface smoothing algorithm

Symmetric bodies model
- friction/contact model
- Simplified to friction against rigid body

Perfect weld model
- Assumption of a perfect perfect weld
- Can simulate the end of the process
- No friction / perfect contact
- Requires initial temperature distribution

Process insights
- Purely surfacic to volumic heat generation transition
- Relative irrelevance of heat exchange model with air and clamps

Numerical challenge
- Surface phenomena are dominant
- Locally refined mesh must be used to ensure accuracy

Proposed solution: Mesh adaptation

Experimental Measurements

LFW process measures*
- friction model calibration
- model validation

*Processes were realized with ACB machine and expertise

K-type thermocouple measurements

Machine builtin upset and global friction force monitoring

Bibliography

Acknowledgements

Authors would like to thank OPTIMUS project partners - ACB, Airbus Group, UTC and CDM for their implication and support.