A. Rabis, P. Rodriguez, and T. J. Schmidt, Electrocatalysis for Polymer Electrolyte Fuel Cells: Recent Achievements and Future Challenges, ACS Catalysis, vol.2, issue.5, p.864, 2012.
DOI : 10.1021/cs3000864

P. Costamagna and S. Srinivasan, Quantum jumps in the PEMFC science and technology from the 1960s to the year 2000, Journal of Power Sources, vol.102, issue.1-2, p.242, 2001.
DOI : 10.1016/S0378-7753(01)00807-2

M. S. Wilson, F. H. Garzon, K. E. Sickafus, and S. Gottesfeld, Surface Area Loss of Supported Platinum in Polymer Electrolyte Fuel Cells, Journal of The Electrochemical Society, vol.140, issue.10, p.2872, 1993.
DOI : 10.1149/1.2220925

J. A. Bett, K. Kinoshita, and P. Stonehart, Crystallite growth of platinum dispersed on graphitized carbon black, Journal of Catalysis, vol.35, issue.2, p.307, 1974.
DOI : 10.1016/0021-9517(74)90209-7

P. J. Ferreira, G. J. La-o-', Y. Shao-horn, D. Morgan, R. Makharia et al., Instability of Pt???C Electrocatalysts in Proton Exchange Membrane Fuel Cells, Journal of The Electrochemical Society, vol.65, issue.11, p.2256, 2005.
DOI : 10.1007/BF01017860

P. Bindra, S. J. Clouser, and E. Yeager, Platinum Dissolution in Concentrated Phosphoric Acid, Journal of The Electrochemical Society, vol.126, issue.9, p.1631, 1979.
DOI : 10.1149/1.2129345

X. P. Wang, R. Kumar, and D. J. Myers, Effect of Voltage on Platinum Dissolution, Electrochemical and Solid-State Letters, vol.283, issue.5, p.225, 2006.
DOI : 10.1149/1.1836156

A. Honji, T. Mori, K. Tamura, and Y. Hishinuma, Agglomeration of Platinum Particles Supported on Carbon in Phosphoric Acid, Journal of The Electrochemical Society, vol.135, issue.2, p.355, 1988.
DOI : 10.1149/1.2095614

L. M. Roen, C. H. Paik, and T. D. Jarvi, Electrocatalytic Corrosion of Carbon Support in PEMFC Cathodes, Electrochemical and Solid-State Letters, vol.97, issue.1, p.19, 2004.
DOI : 10.1149/1.1630412

S. Maass, F. Finsterwalder, G. Frank, R. Hartmann, and C. Merten, Carbon support oxidation in PEM fuel cell cathodes, Journal of Power Sources, vol.176, issue.2, p.444, 2008.
DOI : 10.1016/j.jpowsour.2007.08.053

N. Linse, L. Gübler, G. G. Scherer, and A. Wokaun, The effect of platinum on carbon corrosion behavior in polymer electrolyte fuel cells, Electrochimica Acta, vol.56, issue.22, p.7541, 2011.
DOI : 10.1016/j.electacta.2011.06.093

J. Willsau and J. Heitbaum, The influence of Pt-activation on the corrosion of carbon in gas diffusion electrodes???A dems study, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol.161, issue.1, p.93, 1984.
DOI : 10.1016/S0022-0728(84)80252-1

L. Castanheira, L. Dubau, M. Mermoux, G. Berthomé, N. Caqué et al., Carbon Corrosion in Proton-Exchange Membrane Fuel Cells: From Model Experiments to Real-Life Operation in Membrane Electrode Assemblies, ACS Catalysis, vol.4, issue.7, p.2258, 2014.
DOI : 10.1021/cs500449q

URL : https://hal.archives-ouvertes.fr/hal-01071857

L. Castanheira, W. O. Silva, F. H. Lima, A. Crisci, L. Dubau et al., Carbon Corrosion in Proton-Exchange Membrane Fuel Cells: Effect of the Carbon Structure, the Degradation Protocol, and the Gas Atmosphere, Carbon Corrosion in Proton-Exchange Membrane Fuel Cells: Effect of the Carbon Structure, the Degradation Protocol, and the Gas Atmosphere, p.2184, 2015.
DOI : 10.1021/cs501973j

C. A. Reiser, L. Bregoli, T. W. Patterson, J. S. Yi, J. D. Yang et al., A Reverse-Current Decay Mechanism for Fuel Cells, Electrochemical and Solid-State Letters, vol.8, issue.6, p.273, 2005.
DOI : 10.1149/1.1613669

G. Maranzana, C. Moyne, J. Dillet, S. Didierjean, and O. Lottin, About internal currents during start-up in proton exchange membrane fuel cell, Journal of Power Sources, vol.195, issue.18, p.5990, 2010.
DOI : 10.1016/j.jpowsour.2009.10.093

B. K. Honga, P. Mandala, J. Oh, and S. Litster, On the impact of water activity on reversal tolerant fuel cell anode performance and durability, Journal of Power Sources, vol.328, p.280, 2016.
DOI : 10.1016/j.jpowsour.2016.07.002

A. Masao, S. Noda, F. Takasaki, K. Ito, and K. Sasaki, Carbon-Free Pt Electrocatalysts Supported on SnO[sub 2] for Polymer Electrolyte Fuel Cells, Electrochemical and Solid-State Letters, vol.835, issue.9, p.119, 2009.
DOI : 10.1063/1.371541

Y. Takabatake, Z. Noda, S. M. Lyth, A. Hayashi, and K. Sasaki, Cycle durability of metal oxide supports for PEFC electrocatalysts, International Journal of Hydrogen Energy, vol.39, issue.10, p.5074, 2014.
DOI : 10.1016/j.ijhydene.2014.01.094

P. Zhang, S. Huang, and B. N. Popov, Mesoporous Tin Oxide as an Oxidation-Resistant Catalyst Support for Proton Exchange Membrane Fuel Cells, Journal of The Electrochemical Society, vol.155, issue.8, p.1163, 2010.
DOI : 10.1016/j.ijhydene.2007.05.036

URL : https://scholarcommons.sc.edu/cgi/viewcontent.cgi?article=1169&context=eche_facpub

G. Ozouf and C. Beauger, Niobium- and antimony-doped tin dioxide aerogels as new catalyst supports for PEM fuel cells, Journal of Materials Science, vol.4, issue.61, p.5305, 2016.
DOI : 10.1039/C4RA03988B

URL : https://hal.archives-ouvertes.fr/hal-01280119

V. Gokulakrishnan, S. Parthiban, K. Jeganathan, and K. Ramamurthi, Investigations on the structural, optical and electrical properties of Nb-doped SnO2 thin films, Journal of Materials Science, vol.12, issue.16, p.5553, 2011.
DOI : 10.1002/pip.541

D. Szczuko, J. Werner, S. Oswald, G. Behr, and K. Wetzig, XPS investigations of surface segregation of doping elements in SnO2, Applied Surface Science, vol.179, issue.1-4, p.301, 2001.
DOI : 10.1016/S0169-4332(01)00298-7

E. R. Leite, I. T. Weber, E. Longo, and J. A. Varela, A New Method to Control Particle Size and Particle Size Distribution of SnO2 Nanoparticles for Gas Sensor Applications, Advanced Materials, vol.12, issue.13, p.965, 2000.
DOI : 10.1002/1521-4095(200006)12:13<965::AID-ADMA965>3.0.CO;2-7

F. Takasaki, S. Matsuie, Y. Takabatake, Z. Noda, A. Hayashi et al., Carbon-Free Pt Electrocatalysts Supported on SnO2 for Polymer Electrolyte Fuel Cells: Electrocatalytic Activity and Durability, Journal of The Electrochemical Society, vol.158, issue.10, p.1270, 2011.
DOI : 10.1016/j.jpowsour.2008.06.006

K. Kakinuma, Y. Chino, Y. Senoo, M. Uchida, T. Kamino et al., Characterization of Pt catalysts on Nb-doped and Sb-doped SnO2????? support materials with aggregated structure by rotating disk electrode and fuel cell measurements, Electrochimica Acta, vol.110, p.316, 2013.
DOI : 10.1016/j.electacta.2013.06.127

S. Cavaliere, S. Subianto, I. Savych, M. Tillard, D. J. Jones et al., Architectures: Alternative Electrocatalyst Supports for Proton Exchange Membrane Fuel Cells, The Journal of Physical Chemistry C, vol.117, issue.36, p.18298, 2013.
DOI : 10.1021/jp404570d

URL : https://hal.archives-ouvertes.fr/hal-00903703

S. Shahgaldi and J. Hamelin, The effect of low platinum loading on the efficiency of PEMFC???s electrocatalysts supported on TiO2???Nb, and SnO2???Nb: An experimental comparison between active and stable conditions, Energy Conversion and Management, vol.103, p.681, 2015.
DOI : 10.1016/j.enconman.2015.06.050

G. Cognard, G. Ozouf, C. Beauger, G. Berthomé, D. Riassetto et al., Benefits and limitations of Pt nanoparticles supported on highly porous antimony-doped tin dioxide aerogel as alternative cathode material for proton-exchange membrane fuel cells, Applied Catalysis B: Environmental, vol.201, p.381, 2017.
DOI : 10.1016/j.apcatb.2016.08.010

URL : https://hal.archives-ouvertes.fr/hal-01368861

K. Kakinuma, M. Uchida, T. Kamino, H. Uchida, and M. Watanabe, Synthesis and electrochemical characterization of Pt catalyst supported on Sn0.96Sb0.04O2????? with a network structure, Electrochimica Acta, vol.56, issue.7, p.2881, 2011.
DOI : 10.1016/j.electacta.2010.12.077

M. P. Gurrola, M. Guerra-balcazar, L. Alvarez-contreras, R. Nava, J. Ledesma-garcia et al., High surface electrochemical support based on Sb-doped SnO 2, Journal of Power Sources, vol.243, p.826, 2013.
DOI : 10.1016/j.jpowsour.2013.06.078

D. J. You, K. Kwon, C. Pak, and H. Chang, Platinum???antimony tin oxide nanoparticle as cathode catalyst for direct methanol fuel cell, Catalysis Today, vol.146, issue.1-2, p.15, 2009.
DOI : 10.1016/j.cattod.2008.12.004

M. Yin, J. Y. Xu, G. F. Li, J. O. Jensen, Y. J. Huang et al., Highly active and stable Pt electrocatalysts promoted by antimony-doped SnO2 supports for oxygen reduction reactions, Applied Catalysis B: Environmental, vol.144, p.112, 2014.
DOI : 10.1016/j.apcatb.2013.07.007

H. S. Oh, H. N. Nong, and P. Strasser, Bulk Powder with High Surface Area for Use as Catalyst Supports in Electrolytic Cells, Advanced Functional Materials, vol.396, issue.45, p.1074, 2015.
DOI : 10.1016/0022-0728(95)03950-L

V. Avila-vazquez, M. Galvan-valencia, J. Ledesma-garcia, L. G. Arriaga, V. H. Collins-martinez et al., Electrochemical performance of a Sb-doped SnO2 support synthesized by coprecipitation for oxygen reactions, Journal of Applied Electrochemistry, vol.13, issue.15, p.1175, 2015.
DOI : 10.1016/j.ijhydene.2003.10.011

E. Fabbri, A. Rabis, R. Kotz, and T. J. Schmidt, porous structures: developments and issues, Phys. Chem. Chem. Phys., vol.115, issue.324, p.13672, 2014.
DOI : 10.1021/jp2068446

Y. Senoo, K. Taniguchi, K. Kakinuma, M. Uchida, H. Uchida et al., Cathodic performance and high potential durability of Ta-SnO2?????-supported Pt catalysts for PEFC cathodes, Electrochemistry Communications, vol.51, p.37, 2015.
DOI : 10.1016/j.elecom.2014.12.005

S. J. Tauster and S. C. Fung, Strong metal-support interactions: Occurrence among the binary oxides of groups IIA?VB, Journal of Catalysis, vol.55, issue.1, p.29, 1978.
DOI : 10.1016/0021-9517(78)90182-3

N. Kamiuchi, T. Matsui, R. Kikuchi, and K. Eguchi, Nanoscopic Observation of Strong Chemical Interaction between Pt and Tin Oxide, The Journal of Physical Chemistry C, vol.111, issue.44, p.16470, 2007.
DOI : 10.1021/jp0745337

C. Brieger, J. Melke, N. Van-der-bosch, U. Reinholz, H. Riesemeier et al., A combined in-situ XAS???DRIFTS study unraveling adsorbate induced changes on the Pt nanoparticle structure, Journal of Catalysis, vol.339, p.57, 2016.
DOI : 10.1016/j.jcat.2016.03.034

M. S. Spencer, Models of strong metal-support interaction (SMSI) in Pt on TiO2 catalysts, Journal of Catalysis, vol.93, issue.2, p.216, 1985.
DOI : 10.1016/0021-9517(85)90169-1

T. Daio, A. Staykov, L. M. Guo, J. F. Liu, M. Tanaka et al., Lattice Strain Mapping of Platinum Nanoparticles on Carbon and SnO 2 Supports, Sci. Reports, vol.5, p.10, 2015.

M. Ouattara-brigaudet, C. Beauger, S. Berthon-fabry, and P. Achard, Carbon Aerogels as Catalyst Supports and First Insights on Their Durability in Proton Exchange Membrane Fuel Cells, Fuel Cells, vol.195, issue.6, p.726, 2011.
DOI : 10.1016/j.jpowsour.2010.04.050

URL : https://hal.archives-ouvertes.fr/hal-00634448

M. Ouattara-brigaudet, S. Berthon-fabry, C. Beauger, M. Chatenet, N. Job et al., Influence of the carbon texture of platinum/carbon aerogel electrocatalysts on their behavior in a proton exchange membrane fuel cell cathode, International Journal of Hydrogen Energy, vol.37, issue.12, p.9742, 2012.
DOI : 10.1016/j.ijhydene.2012.03.085

URL : https://hal.archives-ouvertes.fr/hal-00699512

K. S. Lee, I. S. Park, Y. H. Cho, D. S. Jung, N. Jung et al., Electrocatalytic activity and stability of Pt supported on Sb-doped SnO2 nanoparticles for direct alcohol fuel cells, Electrocatalytic activity and stability of Pt supported on Sb-doped SnO 2 nanoparticles for direct alcohol fuel cells, p.143, 2008.
DOI : 10.1016/j.jcat.2008.06.007

A. Oliveira-neto, M. Brandalise, R. R. Dias, J. M. Ayoub, A. C. Silva et al., The performance of Pt nanoparticles supported on Sb2O5.SnO2, on carbon and on physical mixtures of Sb2O5.SnO2 and carbon for ethanol electro-oxidation, International Journal of Hydrogen Energy, vol.35, issue.17, p.9177, 2010.
DOI : 10.1016/j.ijhydene.2010.06.028

C. Q. Pan, Y. Z. Li, Y. H. Ma, X. Zhao, and Q. H. Zhang, Platinum???antimony doped tin oxide nanoparticles supported on carbon black as anode catalysts for direct methanol fuel cells, Journal of Power Sources, vol.196, issue.15, p.6228, 2011.
DOI : 10.1016/j.jpowsour.2011.03.027

D. J. Guo, Electrooxidation of ethanol on novel multi-walled carbon nanotube supported platinum???antimony tin oxide nanoparticle catalysts, Journal of Power Sources, vol.196, issue.2, p.679, 2011.
DOI : 10.1016/j.jpowsour.2010.07.075

F. Micoud, F. Maillard, A. Bonnefont, N. Job, and M. Chatenet, vs.Pt/C, Phys. Chem. Chem. Phys., vol.26, issue.5, p.1182, 2010.
DOI : 10.1016/0013-4686(81)85054-2

J. C. Yang, Y. C. Kim, Y. G. Shul, C. H. Shin, and T. K. Lee, Characterization of photoreduced Pt/TiO 2 and decomposition of dichloroacetic acid over photoreduced Pt/TiO 2 catalysts, Appl. Surf. Sci, vol.121, p.525, 1997.

F. Maillard, M. Eikerling, O. V. Cherstiouk, S. Schreler, E. Savinova et al., Size effects on reactivity of Pt nanoparticles in CO monolayer oxidation: The role of surface mobility, Faraday Discussions, vol.125, p.357, 2004.
DOI : 10.1039/b303911k

URL : https://hal.archives-ouvertes.fr/hal-00417871

L. Dubau and F. Maillard, Unveiling the crucial role of temperature on the stability of oxygen reduction reaction electrocatalysts, Electrochemistry Communications, vol.63, p.65, 2016.
DOI : 10.1016/j.elecom.2015.12.011

J. Durst, M. Chatenet, and F. Maillard, Impact of metal cations on the electrocatalytic properties of Pt/C nanoparticles at multiple phase interfaces, Physical Chemistry Chemical Physics, vol.106, issue.37, p.13000, 2012.
DOI : 10.1021/jp013195l

P. S. Ruvinskiy, A. Bonnefont, M. Houlle, C. Pham-huu, and E. R. Savinova, Preparation, testing and modeling of three-dimensionally ordered catalytic layers for electrocatalysis of fuel cell reactions, Electrochimica Acta, vol.55, issue.9, p.3245, 2010.
DOI : 10.1016/j.electacta.2010.01.033

Q. Dong, S. Santhanagopalan, and R. E. White, Simulation of the Oxygen Reduction Reaction at an RDE in 0.5???M H[sub 2]SO[sub 4] Including an Adsorption Mechanism, Journal of The Electrochemical Society, vol.5, issue.9, p.888, 2007.
DOI : 10.1039/tf9524800796