D. Li, Q. Guo, S. Guo, H. Peng, and Z. Wu, The microstructure evolution and nucleation mechanisms of dynamic recrystallization in hot-deformed Inconel 625 superalloy, Materials & Design, vol.32, issue.2, pp.696-705, 2011.
DOI : 10.1016/j.matdes.2010.07.040

H. Jiang, L. Yang, J. Dong, M. Zhang, and Z. Yao, The recrystallization model and microstructure prediction of alloy 690 during hot deformation, Materials & Design, vol.104, pp.162-173, 2016.
DOI : 10.1016/j.matdes.2016.05.033

Z. Wan, Y. Sun, L. Hu, and H. Yu, Experimental study and numerical simulation of dynamic recrystallization behavior of TiAl-based alloy, Materials & Design, vol.122, 2017.
DOI : 10.1016/j.matdes.2017.02.088

K. Huang and R. Logé, A review of dynamic recrystallization phenomena in metallic materials, Materials & Design, vol.111, pp.548-574, 2016.
DOI : 10.1016/j.matdes.2016.09.012

H. Abedi, A. Zarei-hanzaki, Z. Liu, R. Xin, N. Haghdadi et al., Continuous dynamic recrystallization in low density steel, Materials & Design, vol.114, 2017.
DOI : 10.1016/j.matdes.2016.10.044

A. Kolmogorov, On the Statistical Theory of Crystallization of Metals

W. Johnson and R. , Reaction Kinetics in Processes of Nucleation and Growth, Transactions of the American Institute of Mining and Metallurgical Engineers, pp.416-442, 1939.

M. Avrami, Kinetics of Phase Change. I General Theory, The Journal of Chemical Physics, vol.22, issue.12, 1939.
DOI : 10.1002/zaac.19332140411

C. E. Krill and L. Q. Chen, Computer simulation of 3-D grain growth using a phase-field model, Acta Materialia, vol.50, issue.12, pp.3059-3075, 2002.
DOI : 10.1016/S1359-6454(02)00084-8

M. Bernacki, Y. Chastel, T. Coupez, and R. Logé, Level set framework for the numerical modelling of primary recrystallization in polycrystalline materials, Scripta Materialia, vol.58, issue.12, pp.1129-1132, 2008.
DOI : 10.1016/j.scriptamat.2008.02.016

URL : https://hal.archives-ouvertes.fr/hal-00509731

A. D. Rollett and D. Raabe, A hybrid model for mesoscopic simulation of recrystallization, Computational Materials Science, vol.21, issue.1, pp.69-78, 2001.
DOI : 10.1016/S0927-0256(00)00216-0

URL : http://mimp.materials.cmu.edu/papers/2001_04.pdf

D. Raabe, Introduction of a scalable three-dimensional cellular automaton with a probabilistic switching rule for the discrete mesoscale simulation of recrystallization phenomena, Philosophical Magazine A, vol.191, issue.10, pp.2339-2358, 1999.
DOI : 10.1016/0956-716X(93)90597-L

M. Hillert, On the theory of normal and abnormal grain growth, Acta Metallurgica, vol.13, issue.3, pp.227-238, 1965.
DOI : 10.1016/0001-6160(65)90200-2

F. Montheillet, O. Lurdos, and G. Damamme, A grain scale approach for modeling 515 steady-state discontinuous dynamic recrystallization, Acta Materialia, vol.57, issue.5, 2009.
DOI : 10.1016/j.actamat.2008.11.044

D. G. Cram, H. S. Zurob, Y. J. Brechet, and C. R. Hutchinson, Modelling discontinuous dynamic recrystallization using a physically based model for nucleation, Acta Materialia, vol.57, issue.17, pp.5218-5228, 2009.
DOI : 10.1016/j.actamat.2009.07.024

URL : https://hal.archives-ouvertes.fr/hal-00805034

P. Bernard, S. Bag, K. Huang, and R. Logé, A two-site mean field model of discontinuous dynamic recrystallization, Materials Science and Engineering: A, vol.528, issue.24, pp.7357-7367, 2011.
DOI : 10.1016/j.msea.2011.06.023

URL : https://hal.archives-ouvertes.fr/hal-00612438

S. Url, L. Maire, B. Scholtes, C. Moussa, N. Bozzolo et al., Improvement of 3D mean field models for capillarity-driven grain growth based on full field simulations, Journal of Materials Science, vol.51, issue.24, pp.10970-10981, 2016.

A. Yoshie, H. Morikawa, Y. Onoe, and K. Itoh, Formulation of static recrystallization of austenite in hot rolling process of steel plate., Transactions of the Iron and Steel Institute of Japan, vol.27, issue.6, pp.425-431, 1987.
DOI : 10.2355/isijinternational1966.27.425

J. E. Bailey and P. B. Hirsch, The Recrystallization Process in Some Polycrystalline Metals, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.267, issue.1328, pp.11-30, 1328.
DOI : 10.1098/rspa.1962.0080

P. Peczak and M. J. Luton, The effect of nucleation models on dynamic recrystallization I. Homogeneous stored energy distribution, Philosophical Magazine B, vol.74, issue.1, p.13642819308215285, 1993.
DOI : 10.1016/0956-7151(91)90124-J

S. Kim, B. Ko, C. Lee, S. Hwang, and Y. Yoo, Evolution of dynamic recrystallisation in AISI 304 stainless steel, Materials Science and Technology, vol.63, issue.12, pp.1648-1652, 2003.
DOI : 10.1063/1.1750380

L. Gavard and F. Montheillet, Dynamic recrystallization and grain refinement in a high purity 304L type austenitic stainless steel, Mat??riaux & Techniques, vol.88, issue.5-6, p.200088050065, 2000.
DOI : 10.1051/mattech/200088050065

R. T. Dehoff and G. Q. Liu, On the relation between grain size and grain topology, Metallurgical Transactions A, vol.13, issue.11, pp.2007-2011, 1985.
DOI : 10.2320/matertrans1960.13.198

G. Liu, H. Yu, and X. Qin, Three-dimensional grain topology???size relationships in a real metallic polycrystal compared with theoretical models, Materials Science and Engineering: A, vol.326, issue.2, pp.276-281, 2002.
DOI : 10.1016/S0921-5093(01)01497-6

G. Abbruzzese and A. Campopiano, Topological aspects of grain growth microstructure: The two-dimensional and three-dimensional cases Characterization of threedimensional grain structure in polycrystalline iron by serial sectioning, STERMAT94, Proceedings of the 4th International Conference on Stereology and Image Analysis in Material Science, pp.605-1927, 1994.

S. O. Poulsen, P. W. Voorhees, and E. M. Lauridsen, Three-dimensional simulations of microstructural evolution in polycrystalline dual-phase materials with constant volume fractions, Acta Materialia, vol.61, issue.4, pp.610-61, 2013.
DOI : 10.1016/j.actamat.2012.10.032

URL : http://orbit.dtu.dk/en/publications/threedimensional-simulations-of-microstructural-evolution-in-polycrystalline-dualphase-materials-with-constant-volume-fractions(cd073a8f-c8a9-4df1-8f64-4f00f9e609d4).html

D. Zöllner and P. Streitenberger, Normal Grain Growth: Monte Carlo Potts Model Simulation and Mean-Field Theory, in: Micro-Macro-interaction, p.620

F. Wakai, N. Enomoto, and H. Ogawa, Three-dimensional microstructural evolution in ideal grain growth???general statistics, Acta Materialia, vol.48, issue.6, pp.1297-1311, 2000.
DOI : 10.1016/S1359-6454(99)00405-X

B. Scholtes, M. Shakoor, N. Bozzolo, P. Bouchard, A. Settefrati et al., Advances in Level-Set modeling of recrystallization at the polycrystal scale - 630 Development of the Digimu software, p.2015, 2015.

K. Hitti, P. Laure, T. Coupez, L. Silva, and M. Bernacki, Precise generation of com- 635 plex statistical Representative Volume Elements (RVEs) in a finite element context, Computational Materials Science, vol.61, 2012.

G. P. Michon, Final answers (2004) See Thomsen's formulas and Cantrell's com- 640 ments

G. Shen, S. L. Semiatin, and R. Shivpuri, Modeling microstructural development during the forging of Waspaloy, Metallurgical and Materials Transactions A, vol.4, issue.7, pp.1795-1803, 1995.
DOI : 10.1007/BF02643571

M. Zouari, R. E. Loge, O. Beltran, S. Rousselle, and N. Bozzolo, Multipass forging of Inconel 718 in the delta-Supersolvus domain: assessing and modeling microstructure evolution, MATEC Web of Conferences, vol.57, 2014.
DOI : 10.1016/j.actamat.2008.11.044

URL : https://hal.archives-ouvertes.fr/hal-01064804

G. Smagghe, D. Piot, F. Montheillet, A. Montouchet, M. Bernacki et al., An extended mean field approach for modelling realistic grain size distribution evolutions during Discontinuous Dynamic RX and 655