Deep Learning for Hand Gesture Recognition on Skeletal Data

Abstract : — In this paper, we introduce a new 3D hand gesture recognition approach based on a deep learning model. We introduce a new Convolutional Neural Network (CNN) where sequences of hand-skeletal joints' positions are processed by parallel convolutions; we then investigate the performance of this model on hand gesture sequence classification tasks. Our model only uses hand-skeletal data and no depth image. Experimental results show that our approach achieves a state-of-the-art performance on a challenging dataset (DHG dataset from the SHREC 2017 3D Shape Retrieval Contest), when compared to other published approaches. Our model achieves a 91.28% classification accuracy for the 14 gesture classes case and an 84.35% classification accuracy for the 28 gesture classes case.
Type de document :
Communication dans un congrès
13th IEEE Conference on Automatic Face and Gesture Recognition (FG'2018), May 2018, Xi'An, China. 〈10.1109/FG.2018.00025〉
Liste complète des métadonnées

Littérature citée [47 références]  Voir  Masquer  Télécharger

https://hal-mines-paristech.archives-ouvertes.fr/hal-01737771
Contributeur : Fabien Moutarde <>
Soumis le : jeudi 22 mars 2018 - 16:02:17
Dernière modification le : lundi 12 novembre 2018 - 10:55:00
Document(s) archivé(s) le : mardi 11 septembre 2018 - 08:24:42

Fichier

DeepLearning-HandSkeletalGestu...
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Guillaume Devineau, Wang Xi, Fabien Moutarde, Jie Yang. Deep Learning for Hand Gesture Recognition on Skeletal Data. 13th IEEE Conference on Automatic Face and Gesture Recognition (FG'2018), May 2018, Xi'An, China. 〈10.1109/FG.2018.00025〉. 〈hal-01737771〉

Partager

Métriques

Consultations de la notice

396

Téléchargements de fichiers

1484