Late-lumping backstepping control of partial differential equations

Abstract : We consider in this paper three different partial differential equations (PDEs) that can be exponentially stabilized using backstepping controllers. For implementation, a finite-dimensional controller is generally needed. The backstepping controllers are approximated and it is proven that the finite-dimensional approximated controller stabilizes the original system if the order is high enough. This approach is known as late-lumping. The other approach to controller design for PDE’s first approximates the PDE and then a controller is designed; this is known as early lumping. Simulation results comparing the performance of late-lumping and early-lumping controllers are provided.
Liste complète des métadonnées

https://hal-mines-paristech.archives-ouvertes.fr/hal-01740646
Contributeur : Jean Auriol <>
Soumis le : jeudi 22 mars 2018 - 11:16:04
Dernière modification le : lundi 11 février 2019 - 15:35:00
Document(s) archivé(s) le : jeudi 13 septembre 2018 - 08:35:08

Identifiants

  • HAL Id : hal-01740646, version 1

Citation

Jean Auriol, Kirsten Morris, Florent Di Meglio. Late-lumping backstepping control of partial differential equations. Automatica, Elsevier, 2019, 100, pp.247 - 259. ⟨hal-01740646⟩

Partager

Métriques

Consultations de la notice

226

Téléchargements de fichiers

393