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Abstract

We consider in this paper three different partial differential equations (PDEs) that can be exponentially stabilized using
backstepping controllers. For implementation, a finite-dimensional controller is generally needed. The backstepping controllers
are approximated and it is proven that the finite-dimensional approximated controller stabilizes the original system if the order
is high enough. This approach is known as late-lumping. The other approach to controller design for PDE’s first approximates
the PDE and then a controller is designed; this is known as early lumping. Simulation results comparing the performance of
late-lumping and early-lumping controllers are provided.
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1 Introduction

Controller design for partial differential equations
(PDEs) typically needs to be done using a finite-
dimensional, or lumped, approximation of the PDE.
This approach is known as early lumping. It intro-
duces questions of stability and performance of the
designed system. However, for some PDEs, backstep-
ping controllers can be directly designed using the
PDE. Introduced in [49,50] for a general 1-D linear
reaction-diffusion-advection PDE, it has been extended
to a large number of boundary control problems: flow
control [2,3,59], parabolic PDEs [54,55], or hyperbolic
PDEs [5,17,24]. A complete history of the backstepping
method and of its extensions has recently been given
in [56]. The resulting controllers are explicit, in the sense
that they are expressed as a linear functional of the dis-
tributed state at each instant. The (distributed) gains
can be computed offline. Considering application of such
controllers to industrial problems, in most cases, only
an approximation of the state is available for controller
design and the controller needs to be approximated.

This direct controller design approach is sometimes
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referred to as late lumping since the last step in the
design is to approximate the controller by a finite-
dimensional, or lumped parameter, system. The other
approach is early-lumping where the controller design
is based on a finite-dimensional approximation of the
PDE. Numerous results ensuring the convergence of
early-lumping controllers can be found in the literature;
see for example[7,8,30,32–34,39,40] and the tutorial
paper [42]. However, the question of the convergence
of late-lumping backstepping controllers has not been
well-investigated. In [58], a method for computing the
bounded part of the control operator is proposed. It
relies on a finite-dimensional approximation of the state
and enables efficient computing of the feedback law.
However, the unbounded part of the operator is not
approximated and no guarantees of convergence are
provided.

In this paper late lumping control is considered for three
different systems that can be stabilized using backstep-
ping control laws. The main contribution of this pa-
per is to give sufficient conditions guaranteeing the con-
vergence of backstepping-based late-lumping controllers
for various examples: an unstable heat equation [50], a
wave equation [51] and a general class of linear hyper-
bolic PDEs [17]. For each example, we consider an ap-
proximation of the state (that satisfies some specific as-
sumptions) to design the control law. The resulting feed-
back system is mapped to a simpler target system us-
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ing backstepping-like transformations. An explicit Lya-
punov function is used to prove exponential stability.
The design is based on the boundary control formula-
tion; the system is not converted to state space form. The
performance of these late-lumping controllers are com-
pared to early-lumping controllers in simulations using
a high order approximation of the PDE as the system.

The paper is organized as follow. Section 2 provides the
general framework and recalls existing results for early-
lumping and late-lumping control. Some crucial assump-
tions concerning the state space and the approximating
space are also given. We then prove for various exam-
ples (for which backstepping control laws have already
been derived), that the approximated control laws still
guarantee exponential stabilization. The heat equation
is considered in Section 3, the wave equation in Sec-
tion 4 and a general class of hyperbolic PDEs in Sec-
tion 5. Some simulations results are given for each ex-
ample: the late-lumping controller is compared in term
of performance and control effort with a early-lumping
controllers derived using a Galerkin approximation.

2 Presentation of the method

All the systems systems considered in this paper are
boundary control systems [47]

dz

dt
= Az(t), z(0) = z0, t ∈ [0, T ]

Bz(t) = u(t), (1)

where A : D(A) ⊂ Z 7→ Z with Z a separable Hilbert
spaceZ (the state space), u(t) ∈ U , the Hilbert space U
being the input space. The boundary control opera-
tor B : D(B) ⊂ Z 7→ U is called the control operator
of the system and satisfies D(A) ⊂ D(B). It is assumed
that a unique solution to (1) with u ≡ 0 exists and is
given by the semigroup S(t). The initial condition z0 is
assumed to belong to Z.

These systems can be rewritten in an abstract state
space form, generally using unbounded control opera-
tors; that is, a control operator bounded to some Hilbert
space larger than the state space and an observation op-
erator bounded from a Hilbert space smaller than the
state space [47]. There is an extensive literature dealing
with systems having unbounded control operators; see
for instance [18,19,21,23,31,45,47,57]).

It is not necessary though to convert to state space
form [16]. The backstepping approach uses the boundary
control formulation given by (1) and this formulation is
used in approximation of the backstepping controller.

In this paper, the space Z has to satisfy the following
additional assumption.

Assumption 1 The domain of definitionD(A) satisfies
D(A) ⊂ (H1([0, 1]))p where p is a positive integer.

The value of p depends on the particular PDE.
Since the space H1([0, 1]) is embedded in the Holder

space C0, 12 ([0, 1]), using Morrey’s inequality (see e.g [12,
Theorem 9.12]), a direct consequence of Assumption 1
is the existence of an constant α > 0 such that for
all z ∈ D(A), for all 1 ≤ i ≤ p,

sup
x∈[0,1]

|zi(x)| ≤ α(||zi||H1([0,1]))
p (2)

Definition 1 The system (1) is exponentially stabi-
lizable if there exists K ∈ L(Z,U) such that if u(t) =
Kz(t) the semigroup S associated to (1) is exponentially
stable semigroup, i.e there exist M ≥ 1 and ω > 0 such
that

||S(t)|| ≤Me−ωt (3)

The early-lumping approach (also known as indirect con-
troller design) consists in approximating the original
PDE (1) using standard methods (such as finite elements
for instance). This yields a system of ordinary differen-
tial equations. Controller design is based on this finite-
dimensional approximation. Consider finite-dimensional
subspace Zn of the state-space Z and Pn the orthogonal
projection Pn : Z → Zn such that

∀ z ∈ Z, lim
n→∞

||Pnz − z|| = 0. (4)

The subspaces Zn are equipped with the norm inher-
ited fromZ. Considering this approximation scheme and
defining the operator An ∈ L(Zn,Z) by some method
method while Bn = PnB, this leads to the following
finite-dimensional approximation:

dz̃

dt
= Anz̃(t), z̃(0) = Pnz0, t ∈ [0, T ].

Bnz(t) = u(t) (5)

Denote Sn(t) the semigroups generated by An. We make
the following classical assumption that ensure the uni-
form convergence on bounded intervals of the open-loop
approximating state z̃(t) to the exact state: for each z ∈
Z, and all intervals of time [t1, t2]

lim
n→∞

sup
t∈[t1,t2]

||Sn(t)Pnz − S(t)z|| = 0. (6)

This assumption, which is often satisfied by ensuring
that the conditions of the Trotter-Kato Theorem hold
(see [25,43]), implies open loop convergence.

However (6) is not sufficient to guarantee that a con-
trol sequence un that stabilizes the approximations (5)
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wlll stabilize the original system and provide good per-
formance (see [13,41,42]). For bounded control opera-
tors, a large number of tools and techniques are avail-
able for controller design using this approach; see for ex-
ample[8,14,30,32,33,41,39] and the tutorial paper [42]).
However, boundary control typically leads to an un-
bounded control operator when put in state space form
and only a few results can be found in the literature[7,30].
We do not provide in this paper any general conditions
guaranteeing the convergence of the early-lumping con-
troller for unbounded control operator. However, to com-
pare the results we obtain for late-lumping controller
we derive for each example, without proving conver-
gence or stabilization, two early-lumping controllers: a
backstepping-like controller and a LQR controller.

Late-lumping control

For numerous systems, it is possible to directly de-
rive from the PDE infinite-dimensional state feed-
back insuring stabilization, that is, to find an opera-
tor K ∈ L(Z,U) such that the semigroup associated
to (1) along with the control law u(t) = Kz(t) is stable.
Examples include the backstepping controllers derived
in [5,17,28,50], the flatness-based controllers derived
in [38,46], the optimization controllers in [35], the con-
troller in [36] based on a frequency-domain approach.

In design of a backstepping controller, an integral trans-
formation is used to map the original system to a tar-
get system with desirable properties (in particular, this
system is chosen stable). The control law ensuring the
stabilization of the original system is then derived using
this transformation. For application of these controllers
to industrial problem for which sensors cannot be placed
all along the system, it is necessary to derive an observer.
In this paper, we only focus on the control aspects, ne-
glecting the design of the observer. However, to reflect
the fact that we do not have fully-distributed measure-
ments, we assume that only an approximation of the
state is available to synthesize the control law. More pre-
cisely, considering a stabilizing control law u(t) = Kz,
the late-lumping assumption implies that the real con-
trol law that will be used is

u(t) = KPnz = Kzn, (7)

denoting zn = Pnz where Pn is the orthogonal projec-
tion (4) onto some subspace. Our main contribution is
to prove the uniform convergence of the late-lumping
controller for different examples. Our proofs rely on the
following assumption on the approximation sequence.

Assumption 2 Let p be the integer in Assumption
1. There exists a sequence Cn such that ∀z ∈ Z ⊂
(H1([0, 1]))p,

(1) lim
n→∞

Cn = 0,

(2) ∀n ∈ N, ||KPnz −Kz|| ≤ Cn||z||(H1([0,1]))p .

3 Unstable heat equation

We consider in this section the example of heat con-
duction in a rod of small cross-section. The rod is as-
sumed thin enough so that the temperature can be as-
sumed uniform across the section. We assume that the
effects of heat loss and heat generation inside the rod
are significant and have to be modeled (these terms can
come from radiation, electrical resistivity). Moreover,
we assume that the heat generation dominates the heat
loss which makes the system unstable. The stabilization
objective is achieved by applying a Neumann bound-
ary control on one end and insulating the other. This
yields (see [11,15,22]) the following parabolic PDE (un-
stable heat equation):

zt(t, x) = zxx(t, x) + λz(t, x), z(0, x) = z0 (8)

evolving in {(t, x)| t > 0, x ∈ [0, 1]}, with Neumann
boundary conditions

zx(t, 0) = 0, zx(t, 1) = u(t). (9)

The parameter λ is assumed strictly positive so that the
open-loop system (8)-(9) is unstable. The initial condi-
tion denoted z0 is assumed to belong to H1([0, 1]). For
this system, various control laws ensuring exponential
stabilization have already been designed (see [6,10,50]).
In particular, in [50] a feedback control law is derived
using the backstepping approach.

Late-lumping controller. We recall the main results
of [50] in which is derived a control law that stabilizes
the original infinite-dimensional system (8)-(9) using the
backstepping method [29]. We assume then that only an
approximation of the state is available for control de-
sign (late-lumping) and prove that the resulting control
law stabilizes the original system. Let us consider the
Volterra transformation

w(t, x) = z(t, x)−
∫ x

0

L(x, ξ)z(t, ξ)dξ, (10)

where the kernel L(x, y) is defined on T = {(x, y) ∈
[0, 1]2| y ≤ x} by

L(x, y) =

 −(λ+ c)x
I1(
√

(λ+c)(x2−y2))√
(λ+c)(x2−y2)

, if x 6= y

− (λ+c)
2 x if x = y,

(11)

and where c is an arbitrary strictly positive constant.
The function I1 is the first modified Bessel function.
The function L is two times differentiable on T . In the
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following, we denote by R (bounded on T ) the derivative
of L with respect to x, R := Lx.

Lemma 2 [50, Theorems 5,8] There exist two constants
C1 and C2 such that

C1||w||H1([0,1]) ≤ ||z||H1([0,1]) ≤ C2||w||H1([0,1]) (12)

Defining KBS ∈ L(D(A),R) by

KBSz = − (λ+ c)

2
z(1) +

∫ 1

0

R(1, ξ)z(ξ)dξ, (13)

we define the control law u(t)

uBS(t) = KBSz(t). (14)

The transformation (10) along with the control law (14)
maps the original system (8)-(9) to the stable target sys-
tem

wt(t, x) = wxx(t, x)− cw(t, x), (15)

wx(t, 0) = 0, wx(t, 1) = 0. (16)

Thus, for any initial condition z0 ∈ H1([0, 1]), the sys-
tem (8)-(9) with the control law (14) has a unique classi-
cal solution z(t, x) ∈ C2,1(([0, 1])× (0,∞)) and is expo-
nentially stable at the origin, u(t, x) ≡ 0 in the L2([0, 1])
and H1([0, 1]) norm. The control u(t) = KBSz(t) expo-
nentially stabilizes the system (8)-(9).

Let us now consider an approximation scheme satisfying
Assumption 2 and assume that only the n ∈ N∗ first
modes of the state are available to design the control. We
denote Pn the projection on the approximating space.
This means we consider the system (8)-(9) along with
the control law

unBS(t) = KBSPnz. (17)

Theorem 3 There exists N ∈ N such that for any n ≥
N , for any initial condition z0 ∈ H1([0, 1]), the sys-
tem (8)-(9) along with the approximated control law (17)
is exponentially stable at the origin, z(t, x) ≡ 0 in the
sense of the L2([0, 1])-norm.

PROOF. This theorem can be proved using [27, The-
orem IX.2.4] since the semigroup is analytic perturbed
by a small perturbation. However, this method cannot
be extended for the other examples considered in this
paper, contrary to the Lyapunov-based proof used here.

The main idea of the proof consists in mapping (8)-(9)
along with the control law (17) to a simpler target system
with a similar structure to (15)-(16) using the transfor-
mation (14). This target system is then proved to be ex-
ponentially stable for an order of approximation n large

enough. This is done by the way of a Lyapunov function.
Finally, due to inequality (12), this implies the exponen-
tial stability of the original system.

Let us consider (8)-(9) along with the control law (17).
Similarly to [50], differentiating (10) with respect to
space, we obtain

wx(t, x) = zx(t, x)− L(x, x)z(t, x)−
∫ x

0

R(x, ξ)z(t, ξ)dξ.

and

wxx = zxx(t, x)− L(x, x)zx(t, x)−R(x, x)z(t, x)

d

dx
(L(x, x))z(t, x)−

∫ x

0

Rx(x, ξ)z(t, ξ)dξ.

Similarly, differentiating (10) with respect to time and
using (8)

wt(t, x) = zt(t, x)−
∫ x

0

L(x, ξ)zt(t, ξ)dξ

= zxx(t, x) + λz(t, x)− L(x, x)zx(t, x) + Lξ(x, x)z(t, x)

−
∫ x

0

Lξξ(x, ξ)z(t, ξ) + λL(x, ξ)z(t, ξ)dξ.

Thus, combining the two previous equations and us-
ing (11), we obtain

wt(t, x) = wxx(t, x)− cw(t, x). (18)

Using (17) and (14), we obtain the following Neumann
boundary conditions

wx(t, 0) = 0, wx(t, 1) = unBS(t)− uBS(t). (19)

Using Assumption 2 and inequality (12), we obtain

|KBSPnz −KBSz| ≤ CnC2||w||H1([0,1]). (20)

We now prove the stability of the system (18)-(19) with
a Lyapunov analysis. Inspired by [50], let us consider the
Lyapunov function candidate

V (t) =

∫ 1

0

w2(t, x)dx. (21)

Differentiating V with respect to time and integrating
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by part yields

V̇ (t) = 2

∫ 1

0

w(t, x)(wxx(t, x)− cw(t, x))dx

= −2

∫ 1

0

w2
x(t, x)dx−

∫ 1

0

2cw2(t, x)dx

+ 2w(t, 1)(unBS(t)− uBS(t))

≤ −2

∫ 1

0

w2
x(t, x)dx−

∫ 1

0

2cw2(t, x)dx

+ 2CnC2α||w||2H1([0,1]), (22)

where we have used (1) and (20) to obtain the last in-
equality. Since Cn converges to zero, there exists N ∈ N
such that for all n ≥ N , Cn ≤ min(c,1)

2C2α
This yields the

existence of a constant δ such that

V̇ (t) ≤ −δV (t) (23)

This implies the exponential stability of the system (18)-
(19) in the sense of theL2-norm. Due to (12), the original
state z has the same properties. This concludes the proof.

Early Lumping. We now give the abstract formula-
tion of (8) in terms of operators. This abstract formu-
lation, although it was not required for the design of
the backstepping controller is useful while designing an
early-lumping controller. Define Z = L2([0, 1]). We can
rewrite the system in the abstract form as

ż(t) = Aheatz(t), z(0) = z0.

Bheatz(t) = u(t) (24)

The operator Aheat is defined by

Aheat : D(Aheat) ⊂ (H1([0, 1])) ⊂ L2([0, 1])→ L2([0, 1])

z 7−→ zxx + λz, (25)

with D(Aheat) = {z ∈ H2([0, 1])| zx(0) = 0},
whereH2([0, 1]) indicates the Sobolev space of functions
with weak second derivatives (see e.g [48]). Its domain
of definition satisfies Assumption 1. We equip D(Aheat)
with the scalar product associated with the graph
norm ||z||D(Aheat) = ||z||L2[0,1] + ||Aheatz||L2[0,1], which

is equivalent to the H1([0, 1])-norm. The control oper-
ator Bheat : R → [D(A)]′ is δ(1) where δ(1) indicates
evaluation at x = 1.

The eigenfunctions φi (i = 0, ...) of the operator Aheat

form a Riesz basis for L2(0, 1). These eigenfunctions are
(see [20]) by

φk(x) =

{
1 if k = 0
√

2 cos(kπx) if k 6= 0.
(26)

They form an orthogonal basis of H1([0, 1]). Define
χn = spank=0,··· ,n{φk} and let Pn indicate the pro-
jection onto χn. Then define zn(t, x) = Pnz(t, x) =∑n
k=0 zk(t)φk(x).

Define An by the Galerkin approximation

〈Anφj , φk〉 = 〈Aheatφj , φk〉, (j, k) ∈ [0, n]2 (27)

and Bn = PnBheat.In the following we denote zn =(
z0, · · · zn

)T
, the concatenation of different pro-

jections of z on the space χn. Similarly, we de-

note zn0 =
(

(Pnz0)0, · · · (Pnz0)n

)T
.

The following open-loop convergence result is well-
known.

Lemma 4 [42, e.g.,Theorem 3.1] For each initial condi-
tion z0 ∈ Z, the uncontrolled approximating state zn(t),
converges uniformly on bounded intervals to the exact
state z(t).

Using the Galerkin approximation (27) it becomes pos-
sible to derive early-lumping controllers that can be nu-
merically compared with the late-lumping one. Inspired
by the backstepping controller, a natural way to de-
sign an early-lumping controller is to approximate the
(exponentially stable) target system (15)-(16), find the
eigenvalues of the resulting ODE and place the eigen-
values of (27) on the same location. This sequence of
control law will be denoted unBSearly

. Such a finite di-

mensional backstepping style method is proposed in [6]
using a finite-difference discretization. The results ob-
tained in [6] in simulation were quite unsatisfactory as
the solver required a large number of modes to be effi-
cient. The Galerkin approximation we propose leads to
better results.

A second method to design an early lumping controller
is linear quadratic control. Consider the quadratic func-
tional

J(un, z0) =

∫ ∞
0

〈zn(t), zn(t)〉+ α((un)(t))2dt, (28)

where α > 0 is a tuning coefficient. Some convergence
results can be found for parabolic equations with un-
bounded control operators [7,32]. The LQ controller as-
sociated with minimizing the cost (28) for the Galerkin
approximation stabilizes the original PDE (8) if the
number of modes n is large enough. Moreover it con-
verges to the LQ-optimal controller for (8).

Simulation results. The following lemma is a direct
consequence of Assumption 1 and of Jackson’s inequal-
ity [26],[44, Exercise 1.5.14].
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Fig. 1. Time evolution of the L2-norm and of the control
efforts for different controllers (heat equation, N=30, M=1)

Lemma 5 The considered approximation scheme com-
bined with the control law (14) satisfies Assumption 2.

This implies (Theorem 3) the convergence of the late-
lumping backstepping controller introduced in (14).

We now compare the controller given by (17) with the
two early-lumping controller designed above. The real
system is simulated using the same Galerkin approxima-
tion with the number of modes N = 30. The two con-
trol laws are designed using only M < 30 modes (dif-
ferent values of M will be used). We compare the time
evolution of the L2 norm (performance) and the con-
trol effort for the three different controllers. The param-
eter λ is chosen to be equal to 3. The numerical param-
eters used for the design of the control laws are chosen
as follow: α = 0.1 and c = 2. The initial condition is
defined by z(0, x) = 0.25. These simulations (see Fig-
ures 1-3) show better performance/control effort for the
late-lumping backstepping controller compared to the
early-lumping backstepping controller when only a few
number of modes is used. For a large number of modes,
the behaviors are similar. These simulation results also
tend to show that the early-lumping LQR controller has
a better performance/control effort trade-off compared
to the two other controllers. Although this could be ex-
pected when using a large number of modes, this still
holds even with a few number of modes.

4 Wave equation

A one-dimensional wave equation that is controlled from
one end and contains instability at the other (free) end
is considered in this section. This yields the following
hyperbolic partial differential equation

ztt(t, x) = zxx(t, x), (29)
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Fig. 2. Time evolution of the L2-norm and of the control
efforts for different controllers (heat equation, N=30, M=5)
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Fig. 3. Time evolution of the L2-norm and of the control
efforts for different controllers (heat equation, N=30, M=30)

evolving in {(t, x)| t > 0, x ∈ [0, 1]}, with Neumann
boundary conditions

zx(t, 0) = −qzt(t, 0), zx(t, 1) = u(t). (30)

The parameter q is assumed different from -1 and strictly
negative to avoid having an infinite number of eigenval-
ues in the right half plane (RHP). An infinite number of
eigenvalues in the RHP would make impossible delay-
robust stabilization (see [37]). The free end of the string
is subject to a force proportional to the displacement,
which physically may be the result of various phenom-
ena. For instance, if the x = 0 end of the string is made
of iron and is placed between two magnets of the same
polarity, the string’s end will be subject to a magnetic
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force which depends on its displacement. The initial con-
dition denoted (z0, z0t ) = (z(0, ·), zt(0, ·)) is assumed to
belong toH1([0, 1])×H1([0, 1]). The system is stable but
can still converge to a non-zero value (z1, 0). The objec-
tive of the control design is to ensure the stabilization to
zero and also to increase the convergence rate.

Let us now give the state space formulation of (29).

d

dt

(
z(t)

ż(t)

)
= Awave

(
z(t)

ż(t)

)
, Bwavez(t) = u(t), (31)(

z(0) ż(0)
)

=
(
z0 z0t

)
. (32)

The operator

Awave :D(Awave) ⊂ H1([0, 1])× L2([0, 1])→ (L2([0, 1]))2(
z1

z2

)
7−→

(
0 z2

d2

dx2 z1 0

)
, (33)

with

D(Awave) = {

(
z1

z2

)
∈ H2(0, 1)×H1(0, 1)|(z1)x(0) =

− qz2(0)}

The operatorAwave is densely defined. We equipD(Awave)
with the scalar product associated with the norm
H1([0, 1])×H1([0, 1]). The operator Bwave is defined on
[D(Awave)]′ by Bwave = [0, δ(1)]T .

Late-lumping controller. A late-lumping backstep-
ping controller will be used based on that described
in [51]. Consider the Volterra transformation

w(t, x) = −1 + qc

q2 − 1
z(t, x) +

q(q + c)

q2 − 1
z(t, 0)

− q + c

q2 − 1

∫ x

0

zt(t, ξ)dξ, (34)

where the constant c is an arbitrary strictly positive con-
stant such that c 6= 1 and qc 6= −1. We have the follow-
ing lemma whose proof is straightforward.

Lemma 6 There exist constants C1 and C2 such that

C1(||w||H1([0,1]) + ||wt||H1([0,1])) ≤ (||z||H1([0,1])

+ ||zt||H1([0,1])) ≤ C2(||w||H1 + ||wt||H1([0,1])). (35)

Define KBS ∈ L(D(A),<)

KBSz =
c0q(q + c)

1 + qc
z(t, 0)− c0z(t, 1)− (q + c)

1 + qc
zt(t, 1)

− c0(q + c)

1 + qc

∫ 1

0

zt(t, ξ)dξ, (36)

uBS(t) = KBSz(t), (37)

where c0 is an arbitrary strictly positive coefficient (used
to improve the convergence rate).

Lemma 7 [51, Theorem 1] Transformation (34) along
with the control law (37) maps the original system (29)-
(30) to the following stable target system

wtt(t, x) = wxx(t, x), (38)

with Neumann boundary conditions

wx(t, 0) = cwt(t, 0), wx(t, 1) = −c0w(t, 1). (39)

For any initial condition (z(0, ·), zt(0, ·)) ∈ H2(0, 1) ×
H1(0, 1) compatible with the boundary conditions,
the system (29)-(30) along with the control law uBS
defined by (37), has a unique solution (z, zt) ∈
C([0,∞),H1(0, 1) × L2(0, 1)) which is exponentially
stable in the sense of the norm

(

∫ 1

0

zx(t, x)2dx+

∫ 1

0

zt(t, x)2dx+ z(t, 1)2)2. (40)

PROOF. System (38)-(39) can be obtained from (29)-
(30) differentiating (34) with respect to space and time
(see [51] for details). The rest of the proof is done through
a Lyapunov analysis that can is detailed in [51].

Consider an approximation scheme satisfying Assump-
tion 2 and assume that only the n first modes of the state
are available to design the control (where n ∈ N). We
denote Pn the orthogonal projection on the approximat-
ing space. This means we consider the system (29)-(30)
along with the following control law

unBS(t) = KBSPnz. (41)

We then have the following theorem.

Theorem 8 There exists N ∈ N such that for any n ≥
N , for any initial condition (z(0, ·), zt(0, ·)) ∈ H2(0, 1)×
H1(0, 1) compatible with the boundary conditions, the
system (29)-(30) along with the approximated control
law (41) is exponentially stable at the origin, z(t, x) ≡ 0
in the sense of the norm defined by (40).
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PROOF. This proof is similar to the one of Theorem 3.
Let us consider (29)-(30) along with the control law (41).
As in [51], differentiate twice (34) with respect to space
to obtain

wxx(t, x) = −1 + qc

q2 − 1
zxx(t, x)− q + c

q2 − 1
ztx(t, x).

Similarly, differentiating twice (34) with respect to time
and using (29), we obtain

wt(t, x) = − 1

q2 − 1
(−(1 + qc)zt(t, x) + q(q + c)zt(t, 0)

− (q + c)zx(t, x) + (q + c)zx(t, 0))

wtt(t, x) = − 1

q2 − 1
(−(1 + qc)zxx(t, x)− (q + c)ztx(t, 0))

This yields the target system

wtt(t, x) = wxx(t, x), (42)

with the following Neumann boundary conditions

wx(t, 0) = cwt(t, 0), (43)

wx(t, 1) =
−1

q2 − 1
((1 + qc)zx(t, 1)− (q + c)zt(t, 1))

=
−1

q2 − 1
((1 + qc)u(t)− (q + c)zt(t, 1))

= −c0w(t, 1) +
1 + qc

q2 − 1
(uBS(t)− unBS(t)). (44)

Using Assumption 2 and (35), we obtain

|KBSP
nz −KBSz| ≤ CnC2(||(w,wt)||H1([0,1])). (45)

We now prove the stability of the system (42)-(44) with
a Lyapunov analysis. Inspired by [51], let us consider the
Lyapunov function candidate

V (t) =
1

2

∫ 1

0

w2
x(t, x) + w2

t (t, x)dx+
c0
2
w(t, 1)2

+ δ

∫ 1

0

(x− 2)wx(t, x)wt(t, x)dx (46)

Using the Cauchy Schwartz and Young’s inequalities,
one can show that for sufficiently small δ, there exist
m1 > 0 and m2 > 0 such that

m1U ≤ V ≤ m2U, (47)

where U = ||wx||2 + ||wt||2 + w2(1). In the following,
we will assume that δ is small enough so that (47) is
satisfied. In particular, we assume that δ ≤ c

1+c2 . For
such a δ, V is positive definite. Differentiating V with

respect to time and integrating by part yields

V̇ (t) =

∫ 1

0

wx(t, x)wtx(t, x) + wt(t, x)wxx(t, x)dx

+ δ

∫ 1

0

(x− 2)wxtwt + (x− 2)wxwxxdx+ c0wt(t, 1)w(t, 1)

= −wt(t, 1)wx(t, 1) + wt(t, 1)wx(t, 1)− wt(t, 0)wx(t, 0)

+
1 + qc

q2 − 1
(KBSz −KBSP

nz)wt(t, 1)

+
δ

2
(−w2

x(t, 1) + 2w2
x(t, 0)− w2

t (t, 1) + 2w2
t (t, 0))

− δ

2
(

∫ 1

0

w2
x(t, x) + w2

t (t, x)dx)

Thus,

V̇ ≤ −δ
2

(

∫ 1

0

w2
x(t, x) + w2

t (t, x)dx)− (c− δ(1 + c2))w2
t (t, 0)

− c20
δ

2
w2(t, 1)− δ

2
(
1 + qc

q2 − 1
)2(KBSz −KBSP

nz)2 + (KBSz−

KBSP
nz)

1 + qc

q2 − 1
wt(t, 1) + c0δ

1 + qc

q2 − 1
(KBSz −KBSP

nz)w(t, 1)

≤ −δ
2

(

∫ 1

0

w2
x(t, x) + w2

t (t, x)dx) + c20
δ

4
w2(t, 1)

+
δ

4
||wt||2H1([0,1]) + (

1 + qc

q2 − 1
)2(

α2

δ
+
δ

2
)(KBSz −KBSP

nz)2,

where we have used (2) and Young’s inequality in the
last line. Using (45) leads to

V̇ ≤ −δ
4

(

∫ 1

0

w2
x(t, x) + w2

t (t, x)dx)− c20
δ

4
w2(t, 1)

C2
nC

2
2 (

1 + qc

q2 − 1
)2(

α2

δ
+
δ

2
)(||w||H1([0,1]) + ||wt||H1([0,1]))

2.

Since Cn converges to zero, using Young’s and
Poincarre’s inequality, there exists M > 0 and there
exists N ∈ N such that for all n ≥ N ,

V̇ (t) ≤ −MV (t) (48)

This implies the exponential stability of the system (18)-
(19) in the sense of the norm defined in (40). Due to (35),
the original state z has the same properties. This con-
cludes the proof.

Simulations To implement the system in simulation,
and to design early lumping controllers, a Galerkin ap-
proximation based on eigenfunctions is again used. The
approximation scheme is based on a Riesz basis. Con-
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sider the family φk defined for all k ∈ N∗ by

φk(x) =

(
φ1k(x)

φ2k(x)

)
=

(
1
kπ cos(kπx)

cos(kπx)

)
(49)

Define φ0 and φ0,1 as

φ0(x) =
(

1 0
)T

, φ0,1(x) =
(

0 1
)T

(50)

The family {φ0,1, φk, k ∈ N} forms a Riesz basis
on D(Awave) [20]. Let us consider n ∈ N, we de-
fine χn = span{spani=−n,··· ,n{φi}, φ0,1} and denote Pn,
the orthogonal projection onto χn. The space χn is
equipped with the H1-norm.

Due to Jackson’s theorem, this approximation scheme
satisfies Assumption 2. This implies convergence of the
late-lumping backstepping controller.

Using this approximation scheme, it is straightforward to
design early-lumping backstepping controller and early-
lumping LQR controllers, following a procedure identi-
cal to that described for the heat equation. However,
since the underlying semigroup is not analytic, the con-
vergence or performance of the controllers on the PDE
is not guaranteed.

The late lumping backstepping controller (41) was com-
pared with the two early-lumping controllers. The real
system is simulated using approximation with a num-
ber of modes N = 40. The control laws are designed
using M < 40 modes. We compare the time evolu-
tion of the L2 norm (performance) and the control ef-
fort for the three controllers. The parameters are cho-
sen as follow: q = − 1

2 , α = 0.5, c = 0.8 and c0 = 1.05.
The choice of these parameters is motivated by an ef-
fort to have similar performance in terms of the L2

norm of the late-lumping backstepping controller and
the early-lumping LQR controller when only one mode
is used. The initial conditions are defined by z0(x) =
1 + 1

Nπ cos(Nπx) and z0t (x) = 1 + cos(Nπx). Compar-
ing Figures 4-6, it is apparent that the early-lumping
backstepping controller and the early-lumping LQR con-
troller have similar behavior in this respect. However,
when few modes are used, the late-lumping backstepping
controller achieves similar performance with less control
effort in later times.

5 Two linear coupled hyperbolic PDEs

We consider in this section two linear first-order hyper-
bolic PDEs which appear for instance in Saint-Venant
equations, heat exchangers equations and other linear
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Fig. 4. Time evolution of the L2-norm of the state w and of
the control efforts for different controllers (wave equation,
N=40, M=1)
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Fig. 5. Time evolution of the L2-norm of the state w and of
the control efforts for different controllers (wave equation,
N=40, M=10)

hyperbolic balance laws (see [9]):

wt(t, x) + λwx(t, x) = σ+−z(t, x) (51)

zt(t, x)− µzx(t, x) = σ−+w(t, x), (52)

evolving in {(t, x)| t > 0, x ∈ [0, 1]}, with the following
linear boundary conditions

w(t, 0) = qz(t, 0), z(t, 1) = u(t), (53)

with constant coupling terms σ−+ and σ+− and con-
stant velocities λ and µ. The boundary coupling term
q is assumed non null. Depending on the value of σ+−,
σ−+ and q, the system may be unstable [9] (the eigenval-
ues can curve over). The initial conditions denoted w0

and z0 are assumed to belong to H1([0, 1]) and satisfy
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Fig. 6. Time evolution of the L2-norm of the state w and of
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the compatibility conditions. As proved in [4], the sys-
tem (51)-(53) is delay-robustly stabilizable and has a
finite number of poles in the right half-plane.

Late-lumping controller. In [17] a control law that
stabilizes the original infinite-dimensional system (51)-
(53) using the backstepping method [29] is derived. Con-
sider the Volterra transformation

γ(t, x) = w(t, x)

−
∫ x

0

(Kuu(x, ξ)w(ξ) +Kuv(x, ξ)z(ξ))dξ, (54)

β(t, x) = z(t, x)

−
∫ x

0

(Kvu(x, ξ)w(ξ) +Kvv(x, ξ)z(ξ))dξ, (55)

where the kernels Kuu,Kuv,Kvu,Kvv are defined on
T = {(x, ξ) ∈ [0, 1]2| ξ ≤ x} by a set of hyperbolic
PDEs (see [17]). We have the following lemma, whose
proof is straightforward.

Lemma 9 There exist constants C1 and C2 such that

C1(||γ||H1([0,1]) + ||β||H1([0,1])) ≤||z||H1([0,1])

+ ||w||H1([0,1]), (56)

(||z||H1([0,1]) + ||w||H1([0,1])) ≤C2(||γ||H1([0,1])

+ ||β||H1([0,1])). (57)

Define the control law

uBS(t) = KBS

(
w z

)T
, (58)

KBS

(
w

z

)
=

∫ 1

0

Kvu(1, ξ)w(ξ) +Kvv(1, ξ)z(ξ)dξ.

(59)

Lemma 10 [17, Theorems 3.2] Transformation (54)-
(55) along with the control law (58) maps the original
system (51)-(53) to the following stable target system

γt(t, x) = −λγx(t, x) (60)

βt(t, x) = µβx(t, x) (61)

with the following boundary conditions

γ(t, 0) = qβ(t, 0), β(t, 1) = 0. (62)

For any initial condition (w(0, ·), z(0, ·)) ∈ H1(0, 1) ×
H1(0, 1) that satisfies the compatibility conditions,
the system (51)-(53) along with the control law uBS
defined by (58), has a unique solution (w, z) ∈
C([0,∞),H1(0, 1) × H1(0, 1)) which is exponentially
stable in the sense of the L2-norm. As proved in [17],
using the control law (58), the system actually reaches
its zero equilibrium in finite time tf = 1

λ + 1
µ .

PROOF. System (60)-(62) can be obtained from (51)-
(53), differentiating the invertible Volterra transforma-
tion (54)-(55) with respect to space and time and using
integration by parts (see [17] for details). Since the origin
of the (γ, β) system is L2-exponentially stable with an
arbitrary large exponential decay rate (see [17]), we con-
clude, using the fact that the Volterra transformation is
invertible can the origin of the (w, z)-system is also L2

exponentially stable with an arbitrary large exponential
decay rate.

Let us consider an approximation scheme satisfying As-
sumption 2. Denoting by Pn the projection on the ap-
proximating space, consider the system (51)-(53) along
with the control law

unBS(t) = KBSPn

(
w z

)T
= KBSP

n
(
w z

)T
. (63)

We then have the following theorem.

Theorem 11 There exists N ∈ N such that for
any n ≥ N , for any initial condition z0 ∈ H1([0, 1]), the
system (51)-(53) along with the approximated control
law (63) is exponentially stable at the origin.

PROOF. This proof is similar to that of Theorem 8.
Let us consider (51)-(53) along with the control law (63).
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Using the results from [4], this system can be mapped to

γt(t, x) = −λγx(t, x) βt(t, x) = µβx(t, x) (64)

γ(t, 0) = qβ(t, 0), β(t, 1) = (KBSP
n −KBS)

(
w z

)T
.

(65)

Since the approximation scheme satisfies Assumption 2,
we obtain

|(KBSP
n −KBS)

(
w

z

)
| ≤ CnC2(||(γ, β)||H1). (66)

We now prove the stability of the system (64)-(65) with
a Lyapunov analysis. Let us consider the Lyapunov func-
tion candidate

V (t) =

∫ 1

0

1

λ
e−νxγ2(t, x) +

q2

µ
eνxβ(t, x)dx (67)

where ν is a strictly positive parameters. Using the
Cauchy Schwartz and Young’s inequalities, one can
show that there exist m1 > 0 and m2 > 0 such that

m1(||γ||2 + ||β||2) ≤ V ≤ m2(||γ||2 + ||β||2). (68)

Differentiating V with respect to time and integrating
by part yields

V̇ (t) = −
∫ 1

0

νe−νxγ2(t, x) + νq2eνxβ2(t, x)dx

+ [−e−νxγ2(t, x) + q2eνxβ2(t, x)]10

≤ −
∫ 1

0

νe−νxγ2(t, x) + νq2eνxβ2(t, x)dx

+ q2eν((KBSP
n −KBS)

(
w

z

)
)2

≤ −
∫ 1

0

νe−νxγ2(t, x) + νq2eνxβ2(t, x)dx

+ C2
nC

2
2q

2eν(||γ||2 + ||β||2). (69)

Since Cn converges to zero, we easily obtain using (66)
that there exists M > 0 and there exists N ∈ N such
that for all n ≥ N ,

V̇ (t) ≤ −MV (t) (70)

This implies the exponential stability of the system (64)-
(65). Due to (57), the original state (z, w) has the same
properties. This concludes the proof.

Simulations. The real system is simulated using the
Galerkin’s approximation with a number of modes N =
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Fig. 7. Time evolution of the L2-norm and of the control ef-
forts for different controllers (system (51)-(53), N=40, M=1)

40. The basis we use for the approximating spaces is the
same as the one introduced in the previous section (i.e
the family φk defined in equation (49)-(50)).

We finally compare the controller (63) with two early-
lumping controllers, designed similarly to those in the
previous sections. The control laws are designed using
only M < 40 modes. The system parameters are cho-
sen as follow: σ+− = 0, σ−+ = 1, q = 1. The ini-
tial conditions are defined by w0(x) = z0(x) = 1. The
LQR early-lumping controller did not stabilize the sys-
tem when using more than 10 modes. Therefore, in Fig-
ure 7-8, we compare the time evolution of the L2 norm
(performance) and the control effort for only the early-
lumping backstepping controller and the late-lumping
backstepping controller. The late-lumping backstepping
controller still stabilizes the system in finite-time even
with a few number of modes. The early-lumping back-
stepping controller also stabilizes the system (even with
one mode) but the performance are not as good. How-
ever, when the number of modes increases, we obtain
similar results in term of performance and control efforts
for the two controllers.

6 Concluding remarks

In this paper we have considered different systems that
can be stabilized by a backstepping control law. We have
proved that under some assumptions, these controllers
still ensure exponential stabilization when an approxi-
mation of the state is used. This has been done through
a Lyapunov analysis, using the backstepping method as
an analysis tool.

The late lumping backstepping controllers were com-
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pared in simulations with early-lumping controllers.
Note that stability of the closed loop systems with early
lumping controllers has not been established for the
two wave equation examples. All controllers performed
well for the heat equation. But for the wave equation
(section 4) the late lumping controller was able to sta-
bilize the system with a smaller number of modes than
the early lumping controllers. For the hyperbolic sys-
tem considered in section 5, performance was tuned to
be similar but the late lumping controller required less
control effort when a small number of modes was used.

The presented results raise important questions about
the comparison between late-lumping and early-lumping
controllers. In particular, robustness properties or com-
putational efforts are not considered here. A current lim-
itation for a deeper analysis is the lack of results to ana-
lyze the stability properties of early-lumping controller
for unbounded control operators. This work is a first
step towards practical applications of backstepping con-
trollers. The question of the late-lumping backstepping
controller-observer or the extension to systems of larger
dimensions (using the results of [1,52,53]) has not been
considered in this paper and will be the focus of future
work.
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[10] D.M. Bošković, A. Balogh, and M. Krstić. Backstepping
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