An algorithmic comparison of the Hyper-Reduction and the Discrete Empirical Interpolation Method for a nonlinear thermal problem

Abstract : A novel algorithmic discussion of the methodological and numerical differences of competing parametric model reduction techniques for nonlinear problems are presented. First, the Galerkin reduced basis (RB) formulation is presented which fails at providing significant gains with respect to the computational efficiency for nonlinear problems. Renown methods for the reduction of the computing time of nonlinear reduced order models are the Hyper-Reduction and the (Discrete) Empirical Interpolation Method (EIM, DEIM). An algorithmic description and a methodological comparison of both methods are provided. The accuracy of the predictions of the hyper-reduced model and the (D)EIM in comparison to the Galerkin RB is investigated. All three approaches are applied to a simple uncertainty quantification of a planar nonlinear thermal conduction problem. The results are compared to computationally intense finite element simulations.
Liste complète des métadonnées

Littérature citée [34 références]  Voir  Masquer  Télécharger

https://hal-mines-paristech.archives-ouvertes.fr/hal-01759176
Contributeur : Bibliothèque Umr7633 <>
Soumis le : jeudi 5 avril 2018 - 10:43:55
Dernière modification le : mercredi 12 décembre 2018 - 14:40:03

Fichier

Fritzen-Haasdonk-Ryckelynck Ma...
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

Citation

Felix Fritzen, Bernard Haasdonk, David Ryckelynck, Sebastian Schöps. An algorithmic comparison of the Hyper-Reduction and the Discrete Empirical Interpolation Method for a nonlinear thermal problem. Mathematical and computational applications, MDPI, 2018, 23 (11), pp.8. ⟨10.3390/mca23010008⟩. ⟨hal-01759176⟩

Partager

Métriques

Consultations de la notice

253

Téléchargements de fichiers

260