An algorithmic comparison of the Hyper-Reduction and the Discrete Empirical Interpolation Method for a nonlinear thermal problem - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Mathematical and computational applications Année : 2018

An algorithmic comparison of the Hyper-Reduction and the Discrete Empirical Interpolation Method for a nonlinear thermal problem

(1) , (1) , (2) , (3)
1
2
3

Résumé

A novel algorithmic discussion of the methodological and numerical differences of competing parametric model reduction techniques for nonlinear problems are presented. First, the Galerkin reduced basis (RB) formulation is presented which fails at providing significant gains with respect to the computational efficiency for nonlinear problems. Renown methods for the reduction of the computing time of nonlinear reduced order models are the Hyper-Reduction and the (Discrete) Empirical Interpolation Method (EIM, DEIM). An algorithmic description and a methodological comparison of both methods are provided. The accuracy of the predictions of the hyper-reduced model and the (D)EIM in comparison to the Galerkin RB is investigated. All three approaches are applied to a simple uncertainty quantification of a planar nonlinear thermal conduction problem. The results are compared to computationally intense finite element simulations.
Fichier principal
Vignette du fichier
Fritzen-Haasdonk-Ryckelynck Math and computational appl 2018 25 p.pdf (818.03 Ko) Télécharger le fichier
Origine : Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-01759176 , version 1 (05-04-2018)

Identifiants

Citer

Felix Fritzen, Bernard Haasdonk, David Ryckelynck, Sebastian Schöps. An algorithmic comparison of the Hyper-Reduction and the Discrete Empirical Interpolation Method for a nonlinear thermal problem. Mathematical and computational applications, 2018, 23 (11), pp.8. ⟨10.3390/mca23010008⟩. ⟨hal-01759176⟩
480 Consultations
416 Téléchargements

Altmetric

Partager

Gmail Facebook Twitter LinkedIn More